login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253095
Moments of 4-step random walk in 4 dimensions.
3
1, 4, 22, 148, 1144, 9784, 90346, 885868, 9115276, 97578688, 1079676448, 12285725632, 143204046496, 1704422018992, 20660609113186, 254522834851516, 3180935346538684, 40269426101933392, 515743456513546072, 6675036087017279056, 87221496402779437696, 1149701868292524559744
OFFSET
0,2
LINKS
J. M. Borwein, A short walk can be beautiful, Journal of Humanistic Mathematics, Volume 6 Issue 1 (January 2016), pages 86-109.
J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016.
J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
Jonathan M. Borwein, Armin Straub and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015.
MAPLE
W := proc(n, nu, twok)
option remember;
local k;
k := twok/2 ;
if n = 2 and nu = 1 then
binomial(2*k+2, k+1)/(k+2) ;
else
add( procname(n-1, nu, 2*j)*binomial(k, j)*(k+nu)!*nu!/(k-j+nu)!/(j+nu)!, j=0..k) ;
simplify(%, GAMMA) ;
end if;
end proc:
A253095 := proc(n)
W(4, 1, n) ;
end proc:
seq(A253095(2*n), n=0..25) ; # R. J. Mathar, Jun 14 2015
MATHEMATICA
W[n_, nu_, twok_] := W[n, nu, twok] = Module[{k}, k = twok/2; If[n == 2 && nu == 1, Binomial[2k+2, k+1]/(k+2), Sum[W[n-1, nu, 2j]*Binomial[k, j]*(k+nu)!*nu!/(k-j+nu)!/(j+nu)!, {j, 0, k}]]];
A253095[n_] := W[4, 1, n];
Table[A253095[2n], {n, 0, 25}] (* Jean-François Alcover, Apr 16 2023, after R. J. Mathar *)
CROSSREFS
Sequence in context: A199418 A112898 A368733 * A111529 A346764 A228883
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 16 2015
STATUS
approved