login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253094
Related to residues of poles of moment function for random walks in 6 dimensions.
1
1, -5, 6, 2, 6, 18, 66, 278, 1296, 6528, 34950, 196578, 1151610, 6981102, 43570170, 278841438, 1823991630, 12162884778, 82498605594, 568140045918, 3966323992074, 28032955095198, 200355706872054, 1446628270673682, 10542888272710224, 77496225169484448
OFFSET
0,2
LINKS
Jonathan M. Borwein, Armin Straub and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015.
FORMULA
n*(n+2)*a(n) + 5*(-2*n^2+6*n-1)*a(n-1) + 9*(n-3)*(n-5)*a(n-2) = 0. - R. J. Mathar, Jun 14 2015
MAPLE
A253094 := proc(k)
option remember;
local nu, kno ;
nu := 2;
if k = -1 then
0;
elif k = 0 then
1;
else
kno := k-1 ;
procname(kno)/2*(20*(kno+1/2)^2-20*(kno+1/2)*nu-4*nu^2+1)-9*(kno-nu)*(kno-2*nu)*procname(kno-1) ;
%/(kno+1)/(kno+nu+1) ;
end if;
end proc:
seq(A253094(k), k=0..40) ; # R. J. Mathar, Jun 14 2015
ogf := (x-1)^4*hypergeom([1/3, 7/3], [3], -27*x*(x-1)^2/(9*x-1)^2)/(1-9*x)^(2/3);
series(ogf, x=0, 40); # Mark van Hoeij, Nov 12 2023
MATHEMATICA
a[n_] := a[n] = Switch[n, 0, 1, 1, -5, _, (-9*n^2*a[n-2] + 10*n^2*a[n-1] + 72n*a[n-2] - 30n*a[n-1] - 135 a[n-2] + 5a[n-1])/(n(n+2))];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 15 2023 *)
CROSSREFS
Sequence in context: A091873 A038690 A154801 * A346046 A217015 A107825
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Feb 16 2015
STATUS
approved