login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Related to residues of poles of moment function for random walks in 6 dimensions.
1

%I #31 Nov 12 2023 12:08:27

%S 1,-5,6,2,6,18,66,278,1296,6528,34950,196578,1151610,6981102,43570170,

%T 278841438,1823991630,12162884778,82498605594,568140045918,

%U 3966323992074,28032955095198,200355706872054,1446628270673682,10542888272710224,77496225169484448

%N Related to residues of poles of moment function for random walks in 6 dimensions.

%H Jonathan M. Borwein, Armin Straub and Christophe Vignat, <a href="https://arminstraub.com/pub/dwalks">Densities of short uniform random walks, Part II: Higher dimensions</a>, Preprint, 2015.

%F n*(n+2)*a(n) + 5*(-2*n^2+6*n-1)*a(n-1) + 9*(n-3)*(n-5)*a(n-2) = 0. - _R. J. Mathar_, Jun 14 2015

%p A253094 := proc(k)

%p option remember;

%p local nu,kno ;

%p nu := 2;

%p if k = -1 then

%p 0;

%p elif k = 0 then

%p 1;

%p else

%p kno := k-1 ;

%p procname(kno)/2*(20*(kno+1/2)^2-20*(kno+1/2)*nu-4*nu^2+1)-9*(kno-nu)*(kno-2*nu)*procname(kno-1) ;

%p %/(kno+1)/(kno+nu+1) ;

%p end if;

%p end proc:

%p seq(A253094(k),k=0..40) ; # _R. J. Mathar_, Jun 14 2015

%p ogf := (x-1)^4*hypergeom([1/3, 7/3],[3],-27*x*(x-1)^2/(9*x-1)^2)/(1-9*x)^(2/3);

%p series(ogf, x=0, 40); # _Mark van Hoeij_, Nov 12 2023

%t a[n_] := a[n] = Switch[n, 0, 1, 1, -5, _, (-9*n^2*a[n-2] + 10*n^2*a[n-1] + 72n*a[n-2] - 30n*a[n-1] - 135 a[n-2] + 5a[n-1])/(n(n+2))];

%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Apr 15 2023 *)

%K sign

%O 0,2

%A _N. J. A. Sloane_, Feb 16 2015