login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307442 G.f. A(x) satisfies: A(x) = Sum_{k>=0} k!*x^k*A(x)^k/(1 - x*A(x))^(k+1). 3
1, 2, 9, 54, 379, 2948, 24736, 220622, 2074775, 20491386, 212312349, 2310232488, 26473612772, 320735694048, 4126350096188, 56601987176510, 830233489763775, 13036492313617494, 218958840306428947, 3924128327446669670, 74779561501535316579, 1509296316416028136188 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..21.

FORMULA

G.f. A(x) satisfies: A(x) = Sum_{k>=0} A000522(k)*x^k*A(x)^k.

G.f.: A(x) = (1/x)*Series_Reversion(x/Sum_{k>=0} A000522(k)*x^k).

a(n) ~ exp(3) * n!. - Vaclav Kotesovec, Apr 10 2019

EXAMPLE

G.f.: A(x) = 1 + 2*x + 9*x^2 + 54*x^3 + 379*x^4 + 2948*x^5 + 24736*x^6 + 220622*x^7 + 2074775*x^8 + 20491386*x^9 + 212312349*x^10 + ...

MATHEMATICA

terms = 22; CoefficientList[1/x InverseSeries[Series[x/(1 + Sum[Floor[Exp[1] k!] x^k, {k, 1, terms}]), {x, 0, terms}], x], x]

terms = 22; A[_] = 1; Do[A[x_] = Sum[k! x^k A[x]^k/(1 - x A[x])^(k + 1), {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

terms = 22; A[_] = 1; Do[A[x_] = 1 + Sum[Floor[Exp[1] k!] x^k A[x]^k, {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]

CROSSREFS

Cf. A000522, A088368, A307441, A307443, A307444.

Sequence in context: A241125 A089436 A000168 * A222014 A321974 A127128

Adjacent sequences:  A307439 A307440 A307441 * A307443 A307444 A307445

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Apr 08 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 02:23 EDT 2019. Contains 328135 sequences. (Running on oeis4.)