OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A000522(k)*binomial(n-1,k-1)*a(n-k).
a(n) ~ exp(-exp(1)/2 - 3/4 + 2*exp(1/2)*sqrt(n) - n) * n^(n - 1/4) / sqrt(2). - Vaclav Kotesovec, Dec 19 2018
MAPLE
seq(n!*coeff(series(exp(exp(x)/(1 - x) - 1), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 09 2019
MATHEMATICA
nmax = 21; CoefficientList[Series[Exp[Exp[x]/(1 - x) - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Floor[Exp[1] k!] Binomial[n - 1, k - 1] a[n - k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 19 2018
STATUS
approved