The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321973 Partial sums of the Dedekind psi_2(k) function, for 1 <= k <= n. 1
 0, 1, 6, 16, 36, 62, 112, 162, 242, 332, 462, 584, 784, 954, 1204, 1464, 1784, 2074, 2524, 2886, 3406, 3906, 4516, 5046, 5846, 6496, 7346, 8156, 9156, 9998, 11298, 12260, 13540, 14760, 16210, 17510, 19310, 20680, 22490, 24190, 26270, 27952, 30452, 32302, 34742 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In general, for m >= 1, Sum_{k=1..n} psi_m(k) = Sum_{k=1..n} mu(k)^2 * (Bernoulli(m+1, 1+floor(n/k)) - Bernoulli(m+1, 1)) / (m+1), where mu(k) is the Moebius function and Bernoulli(n,x) are the Bernoulli polynomials. In general, for m >= 1, Sum_{k=1..n} psi_m(k) ~ n^(m+1) * zeta(m+1) / ((m+1) * zeta(2*(m+1))). LINKS Wikipedia, Dedekind psi function FORMULA a(n) = Sum_{k=1..n} A065958(k). a(n) ~ n^3 * zeta(3) / (3*zeta(6)). a(n) = Sum_{k=1..n} mu(k)^2 * Bernoulli(3, 1+floor(n/k)) / 3. MATHEMATICA a[n_] := Sum[MoebiusMu[k]^2 * BernoulliB[3, 1 + Floor[n/k]], {k, 1, n}]/3; Array[a, 50, 0] (* Amiram Eldar, Nov 23 2018 *) PROG (PARI) a(n) = sum(k=1, n, moebius(k)^2 * ((n\k)^3/3 + (n\k)^2/2 + (n\k)/6)); CROSSREFS Cf. A001615, A065958, A173290. Sequence in context: A334047 A199629 A098943 * A178465 A247619 A120586 Adjacent sequences:  A321970 A321971 A321972 * A321974 A321975 A321976 KEYWORD nonn,easy AUTHOR Daniel Suteu, Nov 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 16:31 EDT 2021. Contains 347598 sequences. (Running on oeis4.)