login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267219
Expansion of exp( Sum_{n >= 1} A002895(n)*x^n/n ).
3
1, 4, 22, 152, 1241, 11444, 115390, 1243672, 14104480, 166460800, 2028202288, 25363355200, 324098616925, 4217387014948, 55737166570870, 746544123583928, 10116388473816503, 138496854665195996, 1913322982776458234, 26646647187379206440, 373800949052597088329
OFFSET
0,2
LINKS
FORMULA
n*a(n) = Sum_{k = 0..n-1} A002895(n-k)*a(k).
O.g.f. A(x) = exp( Sum_{n >= 1} A002895(n)*x^n/n ) = 1 + 4*x + 22*x^2 + 152*x^3 + 1241*x^4 + ....
The o.g.f. A(x) satisfies 1 + x* d/dx(log(A(x)) = Sum_{n >= 0} A002895(n)*x^n.
A(x)^(1/4) = 1 + x + 4*x*2 + 25*x^3 + 199*x^4 + 1837*x^5 + ... appears to have integer coefficients.
For integer m, define a sequence {u_m(n) : n >= 0} by u_m(n) = [x^n] A(x)^(m*n/4). Conjecture: the supercongruences u_m(n*p^r) == u_m(n*p^(r-1)) (mod p^(2*r)) hold for all primes p >= 5 and positive integers n and r. - Peter Bala, Oct 17 2024
a(n) ~ c * 16^n / n^(5/2), where c = 0.51464454254223965069014111993955211551145811088623409257449917225276305467... - Vaclav Kotesovec, Oct 31 2024
MAPLE
# define the Domb numbers
A002895 := n -> add(binomial(n, k)^2*binomial(2*n-2*k, n-k)*binomial(2*k, k), k = 0..n):
A267219 := proc (n) option remember; if n = 0 then 1 else 1/n*add( A002895(n-k)*A267219(k), k = 0..n-1) end if; end proc:
seq(A267219(n), n = 0..20);
MATHEMATICA
m = 21;
domb[n_] := Sum[Binomial[n, k]^2 Binomial[2n - 2k, n - k] Binomial[2k, k], {k, 0, n}];
Exp[Sum[domb[n] x^n/n, {n, 1, m}]] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Jan 04 2021 *)
PROG
(PARI) \\ here b(n) is A002895(n).
b(n)={sum(k=0, n, binomial(n, k)^2 * binomial(2*n-2*k, n-k) * binomial(2*k, k) )}
seq(n)={Vec(exp(sum(k=1, n, b(k)*x^k/k, O(x*x^n))))} \\ Andrew Howroyd, Dec 23 2019
CROSSREFS
Sequence in context: A189845 A039304 A349022 * A152404 A062817 A196275
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jan 12 2016
EXTENSIONS
Terms a(17) and beyond from Andrew Howroyd, Dec 23 2019
STATUS
approved