login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350467
a(n) = hypergeom([1/2 - n/2, -n/2], [-n], -8*n).
3
1, 1, 5, 13, 89, 341, 2653, 13021, 110449, 648469, 5891381, 39734685, 382729801, 2887493077, 29287115341, 242592910621, 2577978650081, 23125601566165, 256460946182821, 2465492129670493, 28441473938165561, 290630718826209301, 3477967327342044989, 37528922270996471133
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} binomial(n - k, k)*(2*n)^k.
a(n) = A350470(n, n).
From Vaclav Kotesovec, Jan 08 2024: (Start)
a(n) = ((1 + sqrt(8*n+1))^(n+1) - (1 - sqrt(8*n+1))^(n+1)) / (sqrt(8*n+1) * 2^(n+1)).
a(n) ~ exp(sqrt(n/2)/2) * 2^(n/2 - 1) * n^(n/2) * (1 + 47/(96*sqrt(2*n))). (End)
MATHEMATICA
Table[Hypergeometric2F1[(1 - n)/2, -n/2, -n, -8 n ], {n, 0, 23}]
Table[FullSimplify[((1 + Sqrt[8*n + 1])^(n+1) - (1 - Sqrt[8*n + 1])^(n+1)) / (Sqrt[8*n + 1] * 2^(n+1))], {n, 0, 25}] (* Vaclav Kotesovec, Jan 08 2024 *)
CROSSREFS
Sequence in context: A092955 A190949 A263468 * A081560 A057624 A092567
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 19 2022
STATUS
approved