login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by ascending antidiagonals. T(n, k) = J(k, n) where J are the Jacobsthal polynomials.
5

%I #17 Sep 30 2024 11:40:46

%S 1,1,1,1,1,1,1,1,3,1,1,1,5,5,1,1,1,7,9,11,1,1,1,9,13,29,21,1,1,1,11,

%T 17,55,65,43,1,1,1,13,21,89,133,181,85,1,1,1,15,25,131,225,463,441,

%U 171,1,1,1,17,29,181,341,937,1261,1165,341,1

%N Array read by ascending antidiagonals. T(n, k) = J(k, n) where J are the Jacobsthal polynomials.

%F T(n, k) = Sum_{j=0..k} binomial(k - j, j)*(2*n)^j.

%F T(n, k) = ((1+s)^(k+1) - (1-s)^(k+1)) / (2^(k+1)*s) where s = sqrt(8*n + 1).

%F T(n, k) = [x^k] (1 / (1 - x - 2*n*x^2)).

%F T(n, k) = hypergeom([1/2 - k/2, -k/2], [-k], -8*n).

%e Array starts:

%e n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

%e ---------------------------------------------------------------------

%e [0] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012

%e [1] 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, ... A001045

%e [2] 1, 1, 5, 9, 29, 65, 181, 441, 1165, 2929, ... A006131

%e [3] 1, 1, 7, 13, 55, 133, 463, 1261, 4039, 11605, ... A015441

%e [4] 1, 1, 9, 17, 89, 225, 937, 2737, 10233, 32129, ... A015443

%e [5] 1, 1, 11, 21, 131, 341, 1651, 5061, 21571, 72181, ... A015446

%e [6] 1, 1, 13, 25, 181, 481, 2653, 8425, 40261, 141361, ... A053404

%e [7] 1, 1, 15, 29, 239, 645, 3991, 13021, 68895, 251189, ... A350468

%e [8] 1, 1, 17, 33, 305, 833, 5713, 19041, 110449, 415105, ... A168579

%e [9] 1, 1, 19, 37, 379, 1045, 7867, 26677, 168283, 648469, ... A350469

%e A005408 | A082108 |

%e A016813 A014641

%p J := (n, x) -> add(2^k*binomial(n - k, k)*x^k, k = 0..n):

%p seq(seq(J(k, n-k), k = 0..n), n = 0..10);

%t T[n_, k_] := Hypergeometric2F1[(1 - k)/2, -k/2, -k, -8 n];

%t Table[T[n, k], {n, 0, 9}, {k, 0, 9}] // TableForm

%t (* or *)

%t T[n_, k_] := With[{s = Sqrt[8*n+1]}, ((1+s)^(k+1) - (1-s)^(k+1)) / (2^(k+1)*s)];

%t Table[Simplify[T[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm

%o (PARI)

%o T(n, k) = ([1, 2; k, 0]^n)[1, 1] ;

%o export(T)

%o for(k = 0, 9, print(parvector(10, n, T(n - 1, k))))

%Y Rows: A000012, A001045, A006131, A015441, A015443, A015446, A053404, A350468, A168579, A350469.

%Y Columns: A000012, A005408, A016813, A082108, A014641.

%Y Cf. A350467 (main diagonal), A352361 (Fibonacci polynomials), A352362 (Lucas polynomials).

%K nonn,tabl

%O 0,9

%A _Peter Luschny_, Mar 19 2022