login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110224
a(n) = Fibonacci(n)^3 + Fibonacci(n+1)^3.
5
1, 2, 9, 35, 152, 637, 2709, 11458, 48565, 205679, 871344, 3690953, 15635321, 66231970, 280563633, 1188485803, 5034507976, 21326515877, 90340574445, 382688808866, 1621095817661, 6867072066967, 29089384105824
OFFSET
0,2
LINKS
Diego Marques and Alain Togbé, On the sum of powers of two consecutive Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci., Volume 86, Number 10 (2010), 174-176.
FORMULA
G.f.: (1 - x - 3*x^2 - x^3)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4) = (1 - x - 3*x^2 - x^3)/((1 + x - x^2)*(1 - 4x - x^2)).
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4).
a(n) = (3*(-1)^n*Fibonacci(n-1) + 2*Fibonacci(3*n+2))/5.
MATHEMATICA
Total/@Partition[Fibonacci[Range[0, 30]]^3, 2, 1] (* or *) LinearRecurrence [{3, 6, -3, -1}, {1, 2, 9, 35}, 30] (* Harvey P. Dale, May 29 2013 *)
PROG
(Magma) [Fibonacci(n)^3 + Fibonacci(n+1)^3: n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
(PARI) a(n)=fibonacci(n)^3+fibonacci(n+1)^3 \\ Charles R Greathouse IV, Jun 05 2011
(Sage) [sum(fibonacci(n+k)^3 for k in (0..1)) for n in (0..30)] # G. C. Greubel, Mar 18 2019
CROSSREFS
Cf. A056570.
Sequence in context: A150945 A150946 A150947 * A363549 A150948 A150949
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 16 2005
STATUS
approved