login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(n)^3 + Fibonacci(n+1)^3.
5

%I #22 Sep 08 2022 08:45:19

%S 1,2,9,35,152,637,2709,11458,48565,205679,871344,3690953,15635321,

%T 66231970,280563633,1188485803,5034507976,21326515877,90340574445,

%U 382688808866,1621095817661,6867072066967,29089384105824

%N a(n) = Fibonacci(n)^3 + Fibonacci(n+1)^3.

%H Vincenzo Librandi, <a href="/A110224/b110224.txt">Table of n, a(n) for n = 0..172</a>

%H Diego Marques and Alain Togbé, <a href="http://dx.doi.org/10.3792/pjaa.86.174">On the sum of powers of two consecutive Fibonacci numbers</a>, Proc. Japan Acad. Ser. A Math. Sci., Volume 86, Number 10 (2010), 174-176.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,6,-3,-1).

%F G.f.: (1 - x - 3*x^2 - x^3)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4) = (1 - x - 3*x^2 - x^3)/((1 + x - x^2)*(1 - 4x - x^2)).

%F a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4).

%F a(n) = (3*(-1)^n*Fibonacci(n-1) + 2*Fibonacci(3*n+2))/5.

%t Total/@Partition[Fibonacci[Range[0,30]]^3,2,1] (* or *) LinearRecurrence [{3,6,-3,-1},{1,2,9,35},30] (* _Harvey P. Dale_, May 29 2013 *)

%o (Magma) [Fibonacci(n)^3 + Fibonacci(n+1)^3: n in [0..30]]; // _Vincenzo Librandi_, Jun 05 2011

%o (PARI) a(n)=fibonacci(n)^3+fibonacci(n+1)^3 \\ _Charles R Greathouse IV_, Jun 05 2011

%o (Sage) [sum(fibonacci(n+k)^3 for k in (0..1)) for n in (0..30)] # _G. C. Greubel_, Mar 18 2019

%Y Cf. A056570.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Jul 16 2005