Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Oct 21 2022 21:09:21
%S 1,-1,5,55,209,551,1189,2255,3905,6319,9701,14279,20305,28055,37829,
%T 49951,64769,82655,104005,129239,158801,193159,232805,278255,330049,
%U 388751,454949,529255,612305,704759,807301,920639,1045505,1182655
%N a(n) = n^4 - 3*n^2 + 1.
%H G. C. Greubel, <a href="/A057722/b057722.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(0)=1, a(1)=-1, a(2)=5, a(3)=55, a(4)=209, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - _Harvey P. Dale_, Nov 22 2012
%F From _G. C. Greubel_, Aug 12 2019: (Start)
%F G.f.: (1 -6*x +20*x^2 +10*x^3 -x^4)/(1-x)^5.
%F E.g.f.: (1 -2*x +4*x^2 +6*x^3 +x^4)*exp(x). (End)
%F a(n) = A028387(n-2)*A028387(n-1). - _Lamine Ngom_, Oct 27 2020
%p seq(n^4 -3*n^2 +1, n=0..40); # _G. C. Greubel_, Aug 12 2019
%t Table[n^4-3n^2+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,-1,5,55,209},40] (* _Harvey P. Dale_, Nov 22 2012 *)
%t ((2*Range[0, 40]^2 -3)^2 -5)/4 (* _G. C. Greubel_, Aug 12 2019 *)
%o (PARI) vector(40, n, n--; n^4 -3*n^2 +1) \\ _G. C. Greubel_, Aug 12 2019
%o (Magma) [n^4 -3*n^2 +1: n in [0..40]]; // _G. C. Greubel_, Aug 12 2019
%o (Sage) [n^4 -3*n^2 +1 for n in (0..40)] # _G. C. Greubel_, Aug 12 2019
%o (GAP) List([0..40], n-> n^4 -3*n^2 +1); # _G. C. Greubel_, Aug 12 2019
%Y Cf. A028387.
%K sign,easy
%O 0,3
%A _N. J. A. Sloane_, Oct 27 2000