login
A072025
a(n) = n^4 + 2*n^3 + 4*n^2 + 3*n + 1 = ((n+1)^5+n^5) / (2*n+1).
4
1, 11, 55, 181, 461, 991, 1891, 3305, 5401, 8371, 12431, 17821, 24805, 33671, 44731, 58321, 74801, 94555, 117991, 145541, 177661, 214831, 257555, 306361, 361801, 424451, 494911, 573805, 661781, 759511, 867691, 987041, 1118305, 1262251, 1419671, 1591381
OFFSET
0,2
FORMULA
From Colin Barker, Dec 01 2015: (Start)
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
G.f.: (1+x)^2*(1+4*x+x^2) / (1-x)^5.
(End)
MATHEMATICA
Table[((n+1)^5+n^5)/(2n+1), {n, 0, 30}] (* Vincenzo Librandi, Nov 23 2011 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 11, 55, 181, 461}, 50] (* Harvey P. Dale, Dec 14 2019 *)
PROG
(Magma) [((n+1)^5+n^5)/(2*n+1): n in [0..40]]; // Vincenzo Librandi, Nov 23 2011
(PARI) a(n)=n^4+2*n^3+4*n^2+3*n+1 \\ Charles R Greathouse IV, Nov 23 2011
(PARI) Vec((1+x)^2*(1+4*x+x^2)/(1-x)^5 + O(x^100)) \\ Colin Barker, Dec 01 2015
CROSSREFS
Sequence in context: A009550 A226255 A022606 * A098992 A246990 A156589
KEYWORD
nonn,easy,less
AUTHOR
Henry Bottomley, Jun 06 2002
STATUS
approved