|
|
A072025
|
|
a(n) = n^4 + 2*n^3 + 4*n^2 + 3*n + 1 = ((n+1)^5+n^5) / (2*n+1).
|
|
4
|
|
|
1, 11, 55, 181, 461, 991, 1891, 3305, 5401, 8371, 12431, 17821, 24805, 33671, 44731, 58321, 74801, 94555, 117991, 145541, 177661, 214831, 257555, 306361, 361801, 424451, 494911, 573805, 661781, 759511, 867691, 987041, 1118305, 1262251, 1419671, 1591381
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
G.f.: (1+x)^2*(1+4*x+x^2) / (1-x)^5.
(End)
|
|
MATHEMATICA
|
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 11, 55, 181, 461}, 50] (* Harvey P. Dale, Dec 14 2019 *)
|
|
PROG
|
(PARI) Vec((1+x)^2*(1+4*x+x^2)/(1-x)^5 + O(x^100)) \\ Colin Barker, Dec 01 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,less
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|