login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072025
a(n) = n^4 + 2*n^3 + 4*n^2 + 3*n + 1 = ((n+1)^5+n^5) / (2*n+1).
4
1, 11, 55, 181, 461, 991, 1891, 3305, 5401, 8371, 12431, 17821, 24805, 33671, 44731, 58321, 74801, 94555, 117991, 145541, 177661, 214831, 257555, 306361, 361801, 424451, 494911, 573805, 661781, 759511, 867691, 987041, 1118305, 1262251, 1419671, 1591381
OFFSET
0,2
FORMULA
From Colin Barker, Dec 01 2015: (Start)
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
G.f.: (1+x)^2*(1+4*x+x^2) / (1-x)^5.
(End)
MATHEMATICA
Table[((n+1)^5+n^5)/(2n+1), {n, 0, 30}] (* Vincenzo Librandi, Nov 23 2011 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 11, 55, 181, 461}, 50] (* Harvey P. Dale, Dec 14 2019 *)
PROG
(Magma) [((n+1)^5+n^5)/(2*n+1): n in [0..40]]; // Vincenzo Librandi, Nov 23 2011
(PARI) a(n)=n^4+2*n^3+4*n^2+3*n+1 \\ Charles R Greathouse IV, Nov 23 2011
(PARI) Vec((1+x)^2*(1+4*x+x^2)/(1-x)^5 + O(x^100)) \\ Colin Barker, Dec 01 2015
CROSSREFS
Sequence in context: A009550 A226255 A022606 * A098992 A246990 A156589
KEYWORD
nonn,easy,less
AUTHOR
Henry Bottomley, Jun 06 2002
STATUS
approved