login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072022
Smallest x such that the number of nonprimes (i.e., 1 and composites) in the reduced residue set (RSS(x)) of x equals n, or 0 if there are no such x.
6
1, 5, 7, 15, 26, 11, 13, 38, 102, 17, 19, 25, 0, 23, 35, 144, 74, 198, 29, 31, 75, 57, 104, 94, 37, 55, 69, 41, 43, 118, 0, 47, 81, 128, 87, 134, 53, 93, 480, 146, 77, 59, 61, 117, 111, 166, 172, 67, 250, 91, 71, 73, 350, 194, 129, 202, 79, 206, 212, 83, 214, 153, 218
OFFSET
1,2
COMMENTS
See A074915 for a bound on A048864(x) which allows the establishment of a search range for a(n). - Giovanni Resta, Feb 25 2020
LINKS
Abhijit A J, A. Satyanarayana Reddy, Number of non-primes in the set of units modulo n, arXiv:1907.09908 [math.GM], 2019.
FORMULA
a(n) = min{x; A048864(x)=n}; a(n)=0 if no such number exists.
EXAMPLE
n = 15: RRS(15) = {1,2,4,7,8,11,13,14} of which nonprimes = cRRS(15) = {1,4,8,14}, i.e., 4 terms; 15 is the smallest such number, so a(4) = 15. a(m) = 0 for m = {13, 31, 70, 119, 189, 210, 235, 236}.
MATHEMATICA
f[x_] := EulerPhi[x]-PrimePi[x]+Length[FactorInteger[x]] t=Table[0, {256}]; Do[s=f[n]; If[s<257&&t[[s]]==0, t[[s]]=n], {n, 3, 1000000}]; t
(* Second program: *)
With[{s = Table[Count[Range[n - 1], k_ /; And[CoprimeQ[k, n], ! PrimeQ@ k]], {n, 10^3}]}, Function[{t, u}, Take[#, 63] &@ Join[{1}, Rest@ ReplacePart[t, Map[# -> Lookup[u, #][[1]] &, Rest@ Keys@ u]]]] @@ {ConstantArray[0, Max@ s], KeySort@ PositionIndex@ s}] (* Michael De Vlieger, Jul 30 2017 *)
PROG
(PARI) f(n) = eulerphi(n) - (primepi(n) - omega(n)); \\ A048864
a(n) = {my(k=1); while (f(k) != n, k++); k; } \\ Michel Marcus, Aug 07 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 06 2002
STATUS
approved