login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181370
Square array read by antidiagonals: T(m,n) is the number of L-convex polyominoes with m rows and n columns.
0
1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 42, 19, 1, 1, 29, 110, 110, 29, 1, 1, 41, 235, 402, 235, 41, 1, 1, 55, 441, 1135, 1135, 441, 55, 1, 1, 71, 756, 2709, 4070, 2709, 756, 71, 1, 1, 89, 1212, 5740, 11982, 11982, 5740, 1212, 89, 1, 1, 109, 1845, 11124, 30618, 42510, 30618, 11124, 1845, 109, 1
OFFSET
1,5
COMMENTS
An L-convex polyomino is a convex polyomino where any two cells can be connected by a path internal to the polyomino and which has at most 1 change of direction (i.e., one of the four orientation of the letter L).
LINKS
G. Castiglione, A. Frosini, A. Restivo and S. Rinaldi, Enumeration of L-convex polyominoes by rows and columns, Theor. Comp. Sci., 347, 2005, 336-352.
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741 (see Section 3.1.2).
G. Castiglione and A. Restivo, Reconstruction of L-convex polyominoes, Electronic Notes in Discrete Mathematics, Vol. 12, Elsevier Science, 2003.
FORMULA
T(m,n) = Sum(2^k*(k^2+(m+n-2)*k+mn-1)*binomial(m+n-2,2k)*binomial(m+n-2-2k,m-1-k)/[(m+n-2)(2k+1)], k=0..min(m-1,n-1)) ((m,n)!=(1,1)); T(1,1)=1.
T(n,n) = A126765(n-1).
G.f.: G(x,y) = Sum_{m>=1, n>=1} T(m,n)*x^m*y^n = xy(1-x)(1-y)/(1-2x-2y+x^2+y^2) (see 2nd Maple program).
EXAMPLE
T(2,2)=5 because we have the 2 X 2 square and the four polyominoes obtained by removing 1 square from the four squares of the 2 X 2 square.
Square array starts:
1, 1, 1, 1, 1, ...;
1, 5, 11, 19, 29, ...;
1, 11, 42, 110, 235, ...;
1, 19, 110, 402, 1135, ...;
1, 29, 235, 1135, 4070, ...;
MAPLE
T := proc (m, n) if m = 1 and n = 1 then 1 else sum(2^k*(k^2+(m+n-2)*k+m*n-1)*binomial(m+n-2, 2*k)*binomial(m+n-2-2*k, m-1-k)/((m+n-2)*(2*k+1)), k = 0 .. min(m-1, n-1)) end if end proc: matrix(9, 9, T); # yields first 9 rows and 9 columns of the square array
G := x*y*(1-x)*(1-y)/(1-2*x-2*y+x^2+y^2): a := proc (m, n) options operator, arrow; coeff(series(coeff(simplify(series(G, x = 0, 20)), x, m), y = 0, 20), y, n) end proc: matrix(9, 9, a); # yields first 9 rows and 9 columns of the square array
MATHEMATICA
T[m_, n_] := If[m == 1 && n == 1, 1, Sum[2^k*(k^2 + (m + n - 2)*k + m*n - 1)*Binomial[m + n - 2, 2*k]*Binomial[m + n - 2 - 2*k, m - 1 - k]/((m + n - 2)*(2*k + 1)), {k, 0, Min[m - 1, n - 1]}]];
Table[T[m - n + 1, n], {m, 1, 11}, {n, 1, m}] // Flatten (* Jean-François Alcover, Aug 22 2024, after Maple program *)
CROSSREFS
Cf. A126765.
Sequence in context: A173043 A082046 A132787 * A119307 A296039 A296974
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Oct 18 2010
STATUS
approved