login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181368
Triangle read by rows: T(n,k) is the number of L-convex polyominoes of semiperimeter n, having k maximal rectangles (n >= 2, 1 <= k <= floor(n/2)). An L-convex polyomino is a convex polyomino in which any two cells can be connected by a path internal to the polyomino and which has at most 1 change of direction (i.e., one of the four orientations of the letter L). A maximal rectangle in an L-convex polyomino P is a rectangle included in P that is maximal with respect to inclusion.
1
1, 2, 3, 4, 4, 20, 5, 61, 16, 6, 146, 128, 7, 301, 584, 64, 8, 560, 1992, 704, 9, 966, 5641, 4272, 256, 10, 1572, 14002, 18880, 3584, 11, 2442, 31471, 67820, 27136, 1024, 12, 3652, 65428, 209820, 147200, 17408, 13, 5291, 127699, 579125, 640096, 157952
OFFSET
2,2
COMMENTS
Row n contains floor(n/2) entries.
Sum of entries in row n is A003480(n-2).
Sum_{k>=1} k*T(n,k) = A181369(n).
REFERENCES
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741 (see Fig. 9).
G. Castiglione and A. Restivo, Reconstruction of L-convex polyominoes, Electronic Notes in Discrete Mathematics, Vol. 12, Elsevier Science, 2003.
FORMULA
T(n+2,k+1) = Sum_{j=0..2k} (-1)^j*2^(2k-j)*binomial(2k, j)*binomial(n+2k-j+1, 4k+1).
T(n+2,k+1) = Sum_{j=0..2k} binomial(2k, j)*binomial(n+j+1, 2k+j+1).
G.f. = G(t,z) = t*z^2*(1-z)^2/((1-z)^4 - t*z^2*(2-z)^2).
EXAMPLE
T(3,1)=2 because the L-convex polyominoes of semiperimeter 3 are the horizontal and the vertical dominoes, each containing one maximal rectangle.
Triangle starts:
1;
2;
3, 4;
4, 20;
5, 61, 16;
6, 146, 128;
MAPLE
T := proc (n, k) options operator, arrow: sum(binomial(2*k-2, j)*binomial(n+j-1, 2*k+j-1), j = 0 .. 2*k-2) end proc: for n from 2 to 14 do seq(T(n, k), k = 1 .. floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
Sequence in context: A185417 A214384 A118022 * A037848 A037884 A347728
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Oct 17 2010
STATUS
approved