login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214384
T(n,k)=Number of nXnXn triangular 0..k arrays with no element lying outside the (possibly reversed) range delimited by its sw and se neighbors, and no element equal to its horizontal neighbors
12
2, 3, 4, 4, 14, 8, 5, 32, 94, 16, 6, 60, 456, 890, 32, 7, 100, 1506, 11048, 11700, 64, 8, 154, 3976, 74260, 445024, 211760, 128, 9, 224, 9044, 350232, 6981540, 29456216, 5247716, 256, 10, 312, 18480, 1305392, 65905056, 1232720402, 3183854216, 177440488, 512
OFFSET
1,1
COMMENTS
Table starts
..2.....3......4.......5........6.........7..........8...........9..........10
..4....14.....32......60......100.......154........224.........312.........420
..8....94....456....1506.....3976......9044......18480.......34812.......61512
.16...890..11048...74260...350232...1305392....4107248....11363940....28412824
.32.11700.445024.6981540.65905056.444106514.2347567992.10319444960.39220393240
LINKS
FORMULA
Empirical: rows n=1..5 are polynomials of degree n(n+1)/2 in k
EXAMPLE
Some solutions for n=3 k=3
....1......1......1......3......1......3......1......1......2......1......3
...2.1....1.2....1.2....3.1....1.2....1.3....2.0....1.0....1.3....1.0....3.1
..0.2.0..1.3.1..0.2.1..2.3.0..1.2.3..2.1.3..3.0.3..1.2.0..2.1.3..0.1.0..3.0.2
CROSSREFS
Row 2 is A159920(n+1)
Sequence in context: A265534 A214554 A185417 * A118022 A181368 A037848
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 14 2012
STATUS
approved