login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181367 Number of 2-compositions of n containing at least one 0 entry. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n. 1
2, 6, 22, 78, 272, 940, 3232, 11080, 37920, 129648, 443008, 1513248, 5168000, 17647552, 60258304, 205746304, 702484992, 2398480128, 8189016064, 27959235072, 95459170304, 325918735360, 1112757649408, 3799195224064 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n)=A181365(n,0).

REFERENCES

G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.

LINKS

Table of n, a(n) for n=1..24.

Index entries for linear recurrences with constant coefficients, signature (6,-10,4).

FORMULA

G.f.=2z(1-z)^3/[(1-2z)(1-4z+2z^2)].

4*a(n) = 2*A007070(n)-2^n, n>1. - R. J. Mathar, Jul 22 2022

EXAMPLE

a(2)=6 because the 2-compositions of 2, written as (top row / bottom row), are (1/1), (0/2), (2/0), (1,0/0,1), (0,1/1,0), (1,1/0,0), (0,0/1,1) and only the first one does not contain a 0 entry.

MAPLE

G := 2*z*(1-z)^3/((1-2*z)*(1-4*z+2*z^2)): Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 1 .. 25);

MATHEMATICA

CoefficientList[Series[(2x (1-x)^3)/((1-2x)(1-4x+2x^2)), {x, 0, 30}], x] (* Harvey P. Dale, Mar 29 2020 *)

CROSSREFS

Cf. A181365

Sequence in context: A262068 A148496 A217528 * A106434 A150228 A203038

Adjacent sequences: A181364 A181365 A181366 * A181368 A181369 A181370

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Oct 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 10:58 EDT 2023. Contains 361443 sequences. (Running on oeis4.)