login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array, A(n, k) = (k*n)^2 + 3*k*n + 1, read by antidiagonals.
6

%I #15 Dec 24 2022 11:17:17

%S 1,1,1,1,5,1,1,11,11,1,1,19,29,19,1,1,29,55,55,29,1,1,41,89,109,89,41,

%T 1,1,55,131,181,181,131,55,1,1,71,181,271,305,271,181,71,1,1,89,239,

%U 379,461,461,379,239,89,1,1,109,305,505,649,701,649,505,305,109,1

%N Square array, A(n, k) = (k*n)^2 + 3*k*n + 1, read by antidiagonals.

%H G. C. Greubel, <a href="/A082046/b082046.txt">Antidiagonals n = 0..50, flattened</a>

%F A(n, k) = (k*n)^2 + 3*k*n + 1 (square array).

%F A(k, n) = A(n, k).

%F A(n, n) = T(2*n, n) = A057721(n).

%F A(n, n+1) = A072025(n).

%F T(n, k) = (k*(n-k))^2 + 3*k*(n-k) + 1 (antidiagonals).

%F Sum_{k=0..n} T(n, k) = A082047(n) (antidiagonal sums).

%F From _G. C. Greubel_, Dec 22 2022: (Start)

%F Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*(1 + (-1)^n)*(1 - 2*n).

%F T(2*n+1, n-1) = T(2*n-1, n-1) = A072025(n-1). (End)

%e Array, A(n, k), begins as:

%e 1, 1, 1, 1, 1, 1, 1, 1, ... A000012;

%e 1, 5, 11, 19, 29, 41, 55, 71, ... A028387;

%e 1, 11, 29, 55, 89, 131, 181, 239, ... A082108;

%e 1, 19, 55, 109, 181, 271, 379, 505, ... A069131;

%e 1, 29, 89, 181, 305, 461, 649, 869, ... ;

%e 1, 41, 131, 271, 461, 701, 991, 1331, ... ;

%e 1, 55, 181, 379, 649, 991, 1405, 1891, ... ;

%e 1, 71, 239, 505, 869, 1331, 1891, 2549, ... ;

%e Antidiagonals, T(n, k), begin as:

%e 1;

%e 1, 1;

%e 1, 5, 1;

%e 1, 11, 11, 1;

%e 1, 19, 29, 19, 1;

%e 1, 29, 55, 55, 29, 1;

%e 1, 41, 89, 109, 89, 41, 1;

%e 1, 55, 131, 181, 181, 131, 55, 1;

%e 1, 71, 181, 271, 305, 271, 181, 71, 1;

%t T[n_, k_]:= (k*(n-k))^2 + 3*(k*(n-k)) + 1;

%t Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 22 2022 *)

%o (Magma) [(k*(n-k))^2 + 3*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // _G. C. Greubel_, Dec 22 2022

%o (SageMath)

%o def A082046(n,k): return (k*(n-k))^2 + 3*(k*(n-k)) + 1

%o flatten([[A082046(n,k) for k in range(n+1)] for n in range(14)]) # _G. C. Greubel_, Dec 22 2022

%Y Cf. A028387, A057721, A069131, A072025, A082039, A082043, A082047, A082105, A082108.

%K easy,nonn,tabl

%O 0,5

%A _Paul Barry_, Apr 03 2003