Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 13 2024 05:11:24
%S 1,1,1,1,5,1,1,11,11,1,1,19,46,19,1,1,29,127,127,29,1,1,41,281,517,
%T 281,41,1,1,55,541,1579,1579,541,55,1,1,71,946,4001,6376,4001,946,71,
%U 1,1,89,1541,8889,20626,20626,8889,1541,89,1,1,109,2377,17907,56904,82994
%N Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, k)*C(j, n - k).
%H Indranil Ghosh, <a href="/A119307/b119307.txt">Rows 0..100, flattened</a>
%F T(n, k) = T(n, n - k).
%F T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) for k=0..n-1. - _Peter Luschny_, May 13 2024
%e Triangle begins
%e 1,
%e 1, 1,
%e 1, 5, 1,
%e 1, 11, 11, 1,
%e 1, 19, 46, 19, 1,
%e 1, 29, 127, 127, 29, 1,
%e 1, 41, 281, 517, 281, 41, 1
%e ...
%p T := (n, k) -> if n = k then 1 else binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) fi: for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
%p # _Peter Luschny_, May 13 2024
%t Flatten[Table[Sum[Binomial[j,k] Binomial[j,n-k],{j,0,n}],{n,0,10},{k,0,n}]] (* _Indranil Ghosh_, Mar 03 2017 *)
%o (PARI)
%o tabl(nn)={for (n=0, nn, for(k=0, n, print1(sum(j=0, n, binomial(j,k)*binomial(j,n-k)),", ");); print(););};
%o tabl(10); \\ _Indranil Ghosh_, Mar 03 2017
%Y Second column is A028387.
%Y Row sums are A014300.
%Y Central coefficients T(2*n, n) are A112029.
%K easy,nonn,tabl
%O 0,5
%A _Paul Barry_, May 13 2006