login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nodes of odd outdegree in all ordered rooted (planar) trees with n edges.
28

%I #122 Nov 25 2023 07:35:07

%S 1,2,7,24,86,314,1163,4352,16414,62292,237590,909960,3497248,13480826,

%T 52097267,201780224,783051638,3044061116,11851853042,46208337584,

%U 180383564228,704961896036,2757926215742,10799653176704,42326626862636,166021623024584,651683311373788

%N Number of nodes of odd outdegree in all ordered rooted (planar) trees with n edges.

%C Also total number of blocks of odd size in all Catalan(n) possible noncrossing partitions of [n].

%C Convolution of the sequence of central binomial coefficients 1,2,6,20,70,... (A000984) and of the sequence of Fine numbers 1,0,1,2,6,18,... (A000957).

%C Row sums of A119307. - _Paul Barry_, May 13 2006

%C Hankel transform is A079935. - _Paul Barry_, Jul 17 2009

%C Also for n>=1 the number of unimodal functions f:[n]->[n] with f(i)<>f(i+1). a(3) = 7: [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,3,1], [2,3,2], [3,2,1]. - _Alois P. Heinz_, May 23 2013

%C Also, number of sets of n rational numbers on [0,1) such that if x belongs to the set, the fractional part of 2x also belongs to it. - _Jianing Song_ and _Andrew Howroyd_, May 18 2018

%C Let A(i, j) denote the infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the function ((-1)^(n + 1) + 1)/2 for n > 0. Then A(n, n) equals a(n) for all n > 0. - _John M. Campbell_, Jan 20 2019

%C The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p >= 3 and positive integers n and k. - _Peter Bala_, Jan 07 2022

%H Alois P. Heinz, <a href="/A014300/b014300.txt">Table of n, a(n) for n = 1..500</a>

%H Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.

%H Hacène Belbachir and Abdelghani Mehdaoui, <a href="https://lrecits.usthb.dz/6.5.pdf">Diagonal sums in Pascal pyramid (1, 2, r)</a>, Les Annales RECITS (2019) Vol. 6, 45-52.

%H N. Dershowitz and S. Zaks, <a href="http://dx.doi.org/10.1016/0012-365X(86)90120-2">Ordered trees and non-crossing partitions</a>, Discrete Math., 62 (1986), 215-218.

%H Emeric Deutsch and L. Shapiro, <a href="http://dx.doi.org/10.1016/S0012-365X(01)00121-2">A survey of the Fine numbers</a>, Discrete Math., 241 (2001), 241-265.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F a(n) = (binomial(2*n, n) + A000957(n))/3; [simplified by _Alexander Burstein_, Nov 24 2023]

%F a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k-1). - _Vladeta Jovovic_, Aug 28 2002

%F G.f.: 2*z/(1-4*z+(1+2*z)*sqrt(1-4*z)).

%F a(n) = Sum_{j=0..floor((n-1)/2)} binomial(2*n-2*j-2, n-1).

%F 2*a(n) + a(n-1) = (3*n-1)*Catalan(n-1). - _Vladeta Jovovic_, Dec 03 2004

%F a(n) = (-1)^n*Sum_{i=0..n} Sum_{j=n..2*n} (-1)^(i+j)*binomial(j, i). - _Benoit Cloitre_, Jun 18 2005

%F a(n) = Sum_{k=0..n} C(2*k,n) [offset 0]. - _Paul Barry_, May 13 2006

%F a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n+k-1,k-1). - _Paul Barry_, Jul 18 2006

%F From _Paul Barry_, Jul 17 2009: (Start)

%F a(n) = Sum_{k=0..n} C(2*n-k,n-k)*(1+(-1)^k)/2.

%F a(n) = Sum_{k=0..n} C(n+k,k)*(1+(-1)^(n-k))/2. (End)

%F a(n) is the coefficient of x^(n+1)*y^(n+1) in 1/(1- x^2*y/((1-2*x)*(1-y))). - _Ira M. Gessel_, Oct 30 2012

%F a(n) = -binomial(2*n,n-1)*hyper2F1([1,2*n+1],[n+2], 2). - _Peter Luschny_, Jul 25 2014

%F a(n) = [x^n] x/((1 - x^2)*(1 - x)^n). - _Ilya Gutkovskiy_, Oct 25 2017

%F a(n) ~ 4^n / (3*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 25 2017

%F D-finite with recurrence: 2*n*a(n) +(-3*n-4)*a(n-1) +2*(-9*n+19)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - _R. J. Mathar_, Feb 20 2020

%F a(n) = A333564(n)/2^n. - _Peter Bala_, Apr 09 2020

%F a(n) = (1/2)*(binomial(2*n,n) - A072547(n)). - _Peter Bala_, Mar 28 2023

%p a:= proc(n) a(n):= `if`(n<3, n, ((12-40*n+21*n^2) *a(n-1)+

%p 2*(3*n-1)*(2*n-3) *a(n-2))/ (2*(3*n-4)*n))

%p end:

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Oct 30 2012

%t Rest[CoefficientList[Series[2x/(1-4x+(1+2x)Sqrt[1-4x]),{x,0,40}],x]] (* _Harvey P. Dale_, Apr 25 2011 *)

%t a[n_] := Sum[Binomial[2k, n-1], {k, 0, n-1}]; Array[a, 30] (* _Jean-François Alcover_, Dec 25 2015, after _Paul Barry_ *)

%o (PARI) a(n) = n--; sum(k=0, n, binomial(2*k,n)); \\ _Michel Marcus_, May 18 2018

%o (Magma) [(&+[(-1)^(n-k)*Binomial(n+k-1, k-1): k in [0..n]]): n in [1..30]]; // _G. C. Greubel_, Feb 19 2019

%o (Sage) [sum((-1)^(n-k)*binomial(n+k-1, k-1) for k in (0..n)) for n in (1..30)] # _G. C. Greubel_, Feb 19 2019

%o (Python)

%o from itertools import count, islice

%o def A014300_gen(): # generator of terms

%o yield from (1,2)

%o a, c = 1, 1

%o for n in count(1):

%o yield (a:=(3*n+5)*(c:=c*((n<<2)+2)//(n+2))-a>>1)

%o A014300_list = list(islice(A014300_gen(),20)) # _Chai Wah Wu_, Apr 26 2023

%Y Cf. A059481, A000957, A000984, A072547, A119259, A119307, A079935, A333564.

%K nonn,nice,easy

%O 1,2

%A _Emeric Deutsch_