OFFSET
0,2
COMMENTS
This sequence is the 10th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{j=0..n} (-1)^j*binomial(2*n+k-j,n-j), with k=10.
Conjecture: 2*n*(n+10)*(3*n+17)*a(n) - (21*n^3 + 317*n^2 + 1622*n + 2880)*a(n-1) - 2*(3*n+20)*(n+4)*(2*n+9)*a(n-2) = 0. - R. J. Mathar, Feb 21 2016
EXAMPLE
a(4) = C(18,4) - C(17,3) + C(16,2) - C(15,1) + C(14,0) = 60*51 - 680 + 120 - 15 + 1 = 2486.
MAPLE
a:= n-> add((-1)^(p)*binomial(2*n-p+10, n-p), p=0..n):
seq(a(n), n=0..40);
# 2nd program
a:= n-> coeff(series((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))
/(2*z))^10, z, n+20), z, n):
seq(a(n), n=0..40);
MATHEMATICA
With[{k=10}, CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^k, {x, 0, 30}], x]] (* G. C. Greubel, Feb 27 2019 *)
PROG
(PARI) k=10; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 27 2019
(Magma) k:=10; m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 27 2019
(Sage) k=10; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 27 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Jan 24 2010
STATUS
approved