|
|
A101983
|
|
Numbers that do not occur in A101909 (= number of primes between 2n and 4n).
|
|
3
|
|
|
11, 79, 134, 184, 186, 215, 245, 262, 284, 305, 387, 544, 694, 700, 706, 776, 814, 881, 939, 974, 1002, 1027, 1079, 1104, 1133, 1146, 1184, 1193, 1207, 1354, 1387, 1415, 1441, 1495, 1574, 1587, 1608, 1662, 1690, 1801, 1915, 1987, 2054, 2067, 2104, 2170
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
11 is the first number that does not equal a count of primes between 2n and 4n for some n.
|
|
MATHEMATICA
|
f[n_] := PrimePi[4n] - PrimePi[2n]; t = Union[ Table[ f[n], {n, 12000}]]; Complement[ Range[ t[[ -1]]], t] (* Robert G. Wilson v, Feb 10 2005 *)
|
|
PROG
|
(PARI) bet2n4n(n)={ my( b=vecsort(vector(n, x, my(c=0); forprime(y=2*x+1, 4*x-1, c++); c))); for(x=1, n-2, while(b[x+1]-b[x]>1, print1(b[x]++, ", ")))} \\ It's probably faster to use A101909 instead of forprime(...). Edited and corrected by M. F. Hasler, Sep 29 2019
(PARI) primecount(a, b)=primepi(b)-primepi(a);
v=vector(20000);
for(k=1, oo, j=primecount(2*k, 4*k); if(j>#v, break, v[j]++));
for(k=1, 2170, if(v[k]==0, print1(k, ", "))) \\ Hugo Pfoertner, Sep 29 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|