OFFSET
0,2
COMMENTS
This sequence is the 8th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
a(n) = Sum_{j=0..n} (-1)^j *binomial(2*n+k-j, n-j), with k=8.
a(n) ~ 2^(2*n+9)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+8)*(3*n+13)*a(n) -(21*n^3 + 247*n^2 + 980*n + 1344)*a(n-1) - 2*(n+3)*(3*n+16)*(2*n+7)*a(n-2) = 0. - R. J. Mathar, Feb 29 2016
EXAMPLE
a(4) = C(16,4) - C(15,3) + C(14,2) - C(13,1) + C(12,0) = 20*91 - 35*13 + 91 - 13 + 1 = 1820 - 455 + 79 = 1444.
MAPLE
a:= n-> add((-1)^(p)*binomial(2*n-p+8, n-p), p=0..n):
seq(a(n), n=0..40);
# 2nd program
a:= n-> coeff(series((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))
/(2*z))^8, z, n+20), z, n):
seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^8, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
PROG
(PARI) k=8; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
(Magma) k:=8 m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
(Sage) k=8; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 17 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Jan 24 2010
STATUS
approved