login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172065
Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=8.
11
1, 9, 56, 297, 1444, 6656, 29618, 128603, 548591, 2309467, 9624964, 39799813, 163556776, 668796712, 2723729944, 11055878188, 44753742226, 180746332690, 728571706240, 2932018571370, 11783070278816, 47297147250204
OFFSET
0,2
COMMENTS
This sequence is the 8th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.
LINKS
FORMULA
a(n) = Sum_{j=0..n} (-1)^j *binomial(2*n+k-j, n-j), with k=8.
a(n) ~ 2^(2*n+9)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+8)*(3*n+13)*a(n) -(21*n^3 + 247*n^2 + 980*n + 1344)*a(n-1) - 2*(n+3)*(3*n+16)*(2*n+7)*a(n-2) = 0. - R. J. Mathar, Feb 29 2016
EXAMPLE
a(4) = C(16,4) - C(15,3) + C(14,2) - C(13,1) + C(12,0) = 20*91 - 35*13 + 91 - 13 + 1 = 1820 - 455 + 79 = 1444.
MAPLE
a:= n-> add((-1)^(p)*binomial(2*n-p+8, n-p), p=0..n):
seq(a(n), n=0..40);
# 2nd program
a:= n-> coeff(series((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))
/(2*z))^8, z, n+20), z, n):
seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^8, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
PROG
(PARI) k=8; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
(Magma) k:=8 m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
(Sage) k=8; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 17 2019
CROSSREFS
Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172066 (k=9), A172067 (k=10)
Sequence in context: A097556 A196861 A211844 * A002055 A026842 A026846
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Jan 24 2010
STATUS
approved