login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172025 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=3. 12
1, 4, 16, 62, 239, 920, 3544, 13672, 52834, 204528, 793092, 3080226, 11980667, 46662704, 181971248, 710454896, 2776717742, 10863073784, 42537035408, 166704021596, 653827252022, 2566222449104, 10079023179536, 39611016586832 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This sequence is the third diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows:
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
1, 2, 4, 6, 9, 12, 16, 20, 25, 30,
1, 3, 7, 13, 22, 34, 50, 70, 95.
The Maple programs give the first diagonals of this array.
Apparently the number of peaks in all Dyck paths of semilength n+3 that are 1 step higher than the preceding peak. - David Scambler, Apr 22 2013
LINKS
FORMULA
G.f.: (2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k with k=3.
a(n) = Sum_{p=0..n} (-1)^(p)*binomial(2*n+k-p,n-p), with k=3.
a(n) ~ 2^(2*n+4)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+3)*a(n) + (-7*n^2 - 17*n - 8)*a(n-1) -2*(n+2)*(2*n+1)*a(n-2) = 0. - R. J. Mathar, Feb 19 2016
a(n) = [x^n] 1/((1 - x^2)*(1 - x)^(n+3)). - Ilya Gutkovskiy, Oct 25 2017
EXAMPLE
a(4) = C(11,4) - C(10,3) + C(9,2) - C(8,1) + C(7,0) = 330 - 120 + 36 - 8 + 1 = 239.
MAPLE
a:= n-> add((-1)^(p)*binomial(2*n+3-p, n-p), p=0..n):
seq(a(n), n=0..30);
# second Maple program:
gf:= (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^3:
a:= n-> coeff(series(gf, z, n+10), z, n):
seq(a(n), n=0..30);
MATHEMATICA
a[n_] := Binomial[2*n+3, n+3]*Hypergeometric2F1[1, -n, -3-2*n, -1]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 17 2013 *)
PROG
(PARI) k=3; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 16 2019
(Magma) k:=3; m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 16 2019
(Sage) k=3; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 16 2019
CROSSREFS
Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172066 (k=9), A172067 (k=10).
Sequence in context: A113438 A268429 A195339 * A171278 A227438 A206839
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Jan 23 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 06:22 EDT 2024. Contains 373540 sequences. (Running on oeis4.)