Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4219 N1763 #100 Aug 05 2024 13:35:07
%S 1,0,0,6,36,150,540,1806,5796,18150,55980,171006,519156,1569750,
%T 4733820,14250606,42850116,128746950,386634060,1160688606,3483638676,
%U 10454061750,31368476700,94118013006,282379204836,847187946150,2541664501740,7625194831806
%N a(n) = 3^n - 3*2^n + 3.
%C Differences of 0. Labeled ordered partitions into 3 parts.
%C Number of surjections from an n-element set onto a three-element set, with n >= 3. - _Mohamed Bouhamida_, Dec 15 2007
%C Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is not a subset of y and y is not a subset of x and x and y are disjoint, or 1) x is a proper subset of y or y is a proper subset of x and x and y are intersecting. Then a(n+1) = |R|. - _Ross La Haye_, Mar 19 2009
%C For n>0, the number of rows of n colors using exactly three colors. For n=3, the six rows are ABC, ACB, BAC, BCA, CAB, and CBA. - _Robert A. Russell_, Sep 25 2018
%D H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
%D A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
%H T. D. Noe, <a href="/A001117/b001117.txt">Table of n, a(n) for n = 0..200</a>
%H John Elias, <a href="/A001117/a001117.png">Illustration of initial terms: Interior Sierpinski triangle</a>
%H K. S. Immink, <a href="https://citeseerx.ist.psu.edu/pdf/15d2e7b6e2ab8862c2f25f896b7ee09aa73efe8b">Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols</a>, 2013.
%H Ross La Haye, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/LaHaye/lahaye5.html">Binary Relations on the Power Set of an n-Element Set</a>, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
%H P. A. Piza, <a href="http://www.jstor.org/stable/3029339">Kummer numbers</a>, Mathematics Magazine, 21 (1947/1948), 257-260.
%H P. A. Piza, <a href="/A001117/a001117.pdf">Kummer numbers</a>, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A. H. Voigt, <a href="http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=05260001&seq=7">Theorie der Zahlenreihen und der Reihengleichungen</a>, Leipzig, 1911.
%H A. H. Voigt, <a href="/A000918/a000918.pdf">Theorie der Zahlenreihen und der Reihengleichungen</a>, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6).
%F a(n) = [n=0] + 3!*S(n, 3).
%F E.g.f.: 1 + (exp(x)-1)^3.
%F For n>=3: a(n+1) = 3*a(n) + 3*(2^n - 2) = 3*a(n) + 3*A000918(n). - _Geoffrey Critzer_, Feb 27 2009
%F G.f.: (-1-11*x^2+6*x)/((x-1)*(3*x-1)*(2*x-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
%p with(combstruct):ZL:=[S,{S=Sequence(U,card=r),U=Set(Z,card>=1)}, labeled]: 1, seq(count(subs(r=3,ZL),size=m),m=1..25); # _Zerinvary Lajos_, Mar 09 2007
%p A001117:=-6/(z-1)/(3*z-1)/(2*z-1); # Conjectured by _Simon Plouffe_ in his 1992 dissertation. Gives sequence except for three leading terms.
%t k=3; Prepend[Table[k!StirlingS2[n,k],{n,1,30}],1] (* _Robert A. Russell_, Sep 25 2018 *)
%o (PARI) a(n)=3^n-3*2^n+3 \\ _Charles R Greathouse IV_, Sep 24 2015
%Y Cf. A000919, A001118.
%Y Column 3 of A019538 (n>0).
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_
%E Extended with formula and alternate description by _Christian G. Bower_, Aug 15 1998
%E Simpler description from Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001