login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210322
Number of 5-divided binary words of length n.
2
0, 0, 0, 0, 0, 0, 0, 0, 6, 36, 150, 464, 1304, 3349, 8213, 19230, 43867, 97644, 213776, 461240, 984603, 2082436
OFFSET
1,9
COMMENTS
See A210109 for further information.
REFERENCES
Computed by David Scambler, Mar 19 2012
PROG
(Python)
from itertools import product, combinations, permutations
def is5div(b):
for i, j, k, l in combinations(range(1, len(b)), 4):
divisions = [b[:i], b[i:j], b[j:k], b[k:l], b[l:]]
all_greater = True
for p, bp in enumerate(permutations(divisions)):
if p == 0: continue
if b >= "".join(bp): all_greater = False; break
if all_greater: return True
return False
def a(n): return sum(is5div("".join(b)) for b in product("01", repeat=n))
print([a(n) for n in range(1, 13)]) # Michael S. Branicky, Aug 27 2021
CROSSREFS
Sequence in context: A018214 A181478 A223841 * A056268 A001117 A353664
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Mar 20 2012
EXTENSIONS
a(17)-a(22) from Michael S. Branicky, Aug 27 2021
STATUS
approved