OFFSET
1,4
COMMENTS
The elements in T(n,k) result from the product of each element of A350770(n,k) and binomial(n-1,k).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Ambrosio Valencia-Romero and P. T. Grogan, The strategy dynamics of collective systems: Underlying hindrances beyond two-actor coordination, PLOS ONE 19(4): e0301394 (S1 Appendix).
FORMULA
T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k).
EXAMPLE
Triangle begins:
0;
1, 1;
3, 4, 3;
7, 12, 12, 7;
15, 32, 36, 32, 15;
31, 80, 100, 100, 80, 31;
63, 192, 270, 280, 270, 192, 63;
127, 448, 714, 770, 770, 714, 448, 127;
255, 1024, 1848, 2128, 2100, 2128, 1848, 1024, 255;
511, 2304, 4680, 5880, 5796, 5796, 5880, 4680, 2304, 511;
1023, 5120, 11610, 16080, 16380, 15624, 16380, 16080, 11610, 5120, 1023;
...
MAPLE
T := n -> local k; seq((2^(n - k - 1) + 2^k - 2)*binomial(n - 1, k), k = 0 .. n - 1);
seq(T(n), n = 1 .. 11);
PROG
(PARI) T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k) \\ Andrew Howroyd, Jan 05 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ambrosio Valencia-Romero, Jan 14 2022
STATUS
approved