The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241759 Number of partitions of n into distinct parts of the form 3^k - 2^k, cf. A001047. 5
 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS a(A241783(n)) = 0; a(A240400(n)) > 0. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 FORMULA G.f.: Product_{k>=1} (1 + x^(3^k-2^k)). - Ilya Gutkovskiy, Jan 23 2017 MATHEMATICA nmax = 200; CoefficientList[Series[Product[1 + x^(3^k-2^k), {k, 1, Floor[Log[nmax]/Log[2]] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 24 2017 *) PROG (Haskell) a241759 = p \$ tail a001047_list where    p _      0 = 1    p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m CROSSREFS Cf. A001047, A241766. Sequence in context: A266892 A267152 A151667 * A298249 A286993 A015274 Adjacent sequences:  A241756 A241757 A241758 * A241760 A241761 A241762 KEYWORD nonn AUTHOR Reinhard Zumkeller, Apr 28 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 10:23 EDT 2021. Contains 345056 sequences. (Running on oeis4.)