login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241759
Number of partitions of n into distinct parts of the form 3^k - 2^k, cf. A001047.
5
1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
OFFSET
0
COMMENTS
a(A241783(n)) = 0; a(A240400(n)) > 0.
LINKS
FORMULA
G.f.: Product_{k>=1} (1 + x^(3^k-2^k)). - Ilya Gutkovskiy, Jan 23 2017
MATHEMATICA
nmax = 200; CoefficientList[Series[Product[1 + x^(3^k-2^k), {k, 1, Floor[Log[nmax]/Log[2]] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 24 2017 *)
PROG
(Haskell)
a241759 = p $ tail a001047_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
CROSSREFS
Sequence in context: A266892 A267152 A151667 * A298249 A286993 A015274
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 28 2014
STATUS
approved