login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241759 Number of partitions of n into distinct parts of the form 3^k - 2^k, cf. A001047. 5
1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

COMMENTS

a(A241783(n)) = 0; a(A240400(n)) > 0.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

FORMULA

G.f.: Product_{k>=1} (1 + x^(3^k-2^k)). - Ilya Gutkovskiy, Jan 23 2017

MATHEMATICA

nmax = 200; CoefficientList[Series[Product[1 + x^(3^k-2^k), {k, 1, Floor[Log[nmax]/Log[2]] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 24 2017 *)

PROG

(Haskell)

a241759 = p $ tail a001047_list where

   p _      0 = 1

   p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m

CROSSREFS

Cf. A001047, A241766.

Sequence in context: A266892 A267152 A151667 * A298249 A286993 A015274

Adjacent sequences:  A241756 A241757 A241758 * A241760 A241761 A241762

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Apr 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 10:23 EDT 2021. Contains 345056 sequences. (Running on oeis4.)