|
|
A151667
|
|
Number of partitions of n into distinct powers of 5.
|
|
18
|
|
|
1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..15625
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
|
|
FORMULA
|
G.f.: Prod_{k >= 0 } (1+x^(5^k)). Exponents give A033042.
G.f. A(x) satisfies: A(x) = (1 + x) * A(x^5). - Ilya Gutkovskiy, Aug 12 2019
|
|
MATHEMATICA
|
m = 130; A[_] = 1;
Do[A[x_] = (1+x) A[x^5] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 19 2019 *)
|
|
CROSSREFS
|
For generating functions Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Cf. A039966, A151666, A033042.
Sequence in context: A267126 A266892 A267152 * A241759 A298249 A286993
Adjacent sequences: A151664 A151665 A151666 * A151668 A151669 A151670
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, May 30 2009
|
|
STATUS
|
approved
|
|
|
|