login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241762
a(n) is the least number k > 0 such that sigma(k/n) = phi(k).
1
1, 2, 45, 12, 70, 36, 42, 336, 270, 420, 1848, 2520, 2730, 5880, 12600, 332640, 353430, 166320, 175560, 1663200, 2522520, 87650640, 118798680, 1051807680, 671517000, 1139458320, 35231316120, 15952416480, 16522145640, 495664369200, 563462139240, 18030788455680, 37620925622280, 130723216303680, 43948907402400
OFFSET
1,2
FORMULA
a(n) = n * A256527(n). - Max Alekseyev, Sep 29 2023
EXAMPLE
For n=11, the least number is 1848. In fact, sigma(1848/11) = phi(1848) = 480.
MAPLE
with(numtheory): P:=proc(q) local k, n;
for k from 1 to q do for n from k by k to q do
if sigma(n/k)=phi(n) then print(n); break; fi;
od; od; end: P(10^5);
PROG
(PARI) for(k=1, 29, n=0; for(i=1, 2^64, if(sigma(i)==eulerphi(i*k), n=i*k; break)); print(k, " ", n)) \\ Dana Jacobsen, May 02 2014
(Perl) use Math::Prime::Util qw/:all/; for $k (1..29) { $i=1; $i++ while divisor_sum($i) != euler_phi($i*$k); say "$k ", $i*$k; } # Dana Jacobsen, May 02 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Apr 28 2014
EXTENSIONS
a(22)-a(26) from Giovanni Resta, Apr 29 2014
a(27)-a(29) from Dana Jacobsen, May 02 2014
a(30)-a(35) from Max Alekseyev, Sep 29 2023
STATUS
approved