login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127071
Quotients (3^p - 2^p - 1)/p, where p = prime(n).
9
2, 6, 42, 294, 15918, 122010, 7588770, 61144062, 4092816966, 2366546223930, 19924878993558, 12169831579784970, 889585223857256850, 7633882758103350126, 565719451451489679414, 365721616201373974378410
OFFSET
1,1
COMMENTS
Prime p divides 3^p - 2^p - 1. 42 = 2*3*7 divides a(n) for n>2.
Numbers n such that n divides 3^n - 2^n - 1 are listed in A127072.
Pseudoprimes in A127072 include all powers of primes {2,3,7} and some composite numbers that are listed in A127073.
Numbers n such that n^2 divides 3^n - 2^n - 1 are listed in A127074.
Numbers n such that n^3 divides 3^n - 2^n - 1 are {1,4,7,...}.
LINKS
FORMULA
a(n) = (3^prime(n) - 2^prime(n) - 1)/prime(n).
MAPLE
seq((3^ithprime(n) -2^ithprime(n) -1)/(ithprime(n)), n=1..20); # G. C. Greubel, Aug 11 2019
MATHEMATICA
Table[(3^Prime[n]-2^Prime[n]-1)/Prime[n], {n, 1, 20}]
PROG
(PARI) vector(20, n, p=prime; (3^p(n) - 2^p(n) -1)/p(n) ) \\ G. C. Greubel, Aug 11 2019
(Magma) p:=NthPrime; [(3^p(n) -2^p(n) -1)/p(n): n in [1..20]]; // G. C. Greubel, Aug 11 2019
(Sage) p=nth_prime; [(3^p(n) -2^p(n) -1)/p(n) for n in (1..20)] # G. C. Greubel, Aug 11 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Jan 04 2007
STATUS
approved