login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

An Alexander sequence for the knot 7_7.
2

%I #12 Apr 18 2019 09:57:14

%S 1,5,16,40,79,110,23,-520,-2336,-6995,-16574,-31075,-38848,9560,

%T 258631,1043950,2978719,6781640,12060848,13119125,-12022526,

%U -124662155,-461573264,-1259138680,-2752822273,-4615067410,-4134056729,8360350360,58685747584,202130368445,528415922498

%N An Alexander sequence for the knot 7_7.

%C The denominator is a parameterization of the Alexander polynomial for the knot 7_7. 1/(1-5*x+9*x^2-5*x^3+x^4) is the image of the g.f. of A099450 under the modified Chebyshev transform A(x)->(1/(1+x^2)^2)A(x/(1+x^2)).

%H Dror Bar-Natan, <a href="http://katlas.org/wiki/Main_Page">The Rolfsen Knot Table</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-9,5,-1).

%F G.f.: (1-x)*(1+x)*(1+x^2)/(1-5*x+9*x^2-5*x^3+x^4). - corrected by _R. J. Mathar_, Nov 24 2012

%F a(n)=A099451(n)-A099451(n-2).

%t LinearRecurrence[{5,-9,5,-1},{1,5,16,40,79},40] (* _Harvey P. Dale_, Apr 18 2019 *)

%K easy,sign

%O 0,2

%A _Paul Barry_, Oct 16 2004