login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155965
a(n) = n*(n^2+4).
4
0, 5, 16, 39, 80, 145, 240, 371, 544, 765, 1040, 1375, 1776, 2249, 2800, 3435, 4160, 4981, 5904, 6935, 8080, 9345, 10736, 12259, 13920, 15725, 17680, 19791, 22064, 24505, 27120, 29915, 32896, 36069, 39440, 43015, 46800, 50801, 55024, 59475, 64160
OFFSET
0,2
COMMENTS
The identity (n^3+4*n)^2 + (2*n^2+8)^2 = (n^2+4)^3 can be written as a(n)^2 + A155966(n)^2 = A087475(n)^3.
FORMULA
G.f.: x*(5 - 4*x + 5*x^2)/(1 - x)^4. - Vincenzo Librandi, May 03 2014
a(n) = 4*a(n-1) - 6*a(n-2) +4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, May 03 2014
a(n) = A006003(n-1) + A006003(n+1). - Lechoslaw Ratajczak, Oct 31 2021
MATHEMATICA
Table[n (n^2 + 4), {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, May 04 2011 *)
CoefficientList[Series[x (5 - 4 x + 5 x^2)/(1 - x)^4, {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 5, 16, 39}, 50] (* Harvey P. Dale, Jan 23 2019 *)
PROG
(Sage) [lucas_number1(4, n, -2) for n in range(0, 41)] # Zerinvary Lajos, May 16 2009
(PARI) a(n)=n*(n^2+4) \\ Charles R Greathouse IV, Jan 11 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 31 2009
STATUS
approved