OFFSET
0,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x*(5 - 4*x + 5*x^2)/(1 - x)^4. - Vincenzo Librandi, May 03 2014
a(n) = 4*a(n-1) - 6*a(n-2) +4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, May 03 2014
MATHEMATICA
Table[n (n^2 + 4), {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, May 04 2011 *)
CoefficientList[Series[x (5 - 4 x + 5 x^2)/(1 - x)^4, {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 5, 16, 39}, 50] (* Harvey P. Dale, Jan 23 2019 *)
PROG
(Sage) [lucas_number1(4, n, -2) for n in range(0, 41)] # Zerinvary Lajos, May 16 2009
(PARI) a(n)=n*(n^2+4) \\ Charles R Greathouse IV, Jan 11 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 31 2009
STATUS
approved