login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186707
Partial sums of A007202 (crystal ball sequence for hexagonal close-packing).
3
1, 14, 71, 224, 547, 1134, 2101, 3584, 5741, 8750, 12811, 18144, 24991, 33614, 44297, 57344, 73081, 91854, 114031, 140000, 170171, 204974, 244861, 290304, 341797, 399854, 465011, 537824, 618871, 708750, 808081, 917504, 1037681, 1169294, 1313047, 1469664
OFFSET
0,2
COMMENTS
Subsequence of primes begins 71, 547, 5741, 114031, 244861, 465011, 808081, 1037681. Subsequence of powers includes 537824 = 2^5 * 7^5.
The sequence is a quasipolynomial, so under the Bunyakovsky conjecture there are infinitely many primes in this sequence. - Charles R Greathouse IV, Aug 21 2011
Let s(0) = 0 and s(n) = A186707(n-1) for n > 0. Then s(n) is the number of 4-tuples (w,x,y,z) having all terms in {1, ..., n} and |w - x| < w + |y - z|. - Clark Kimberling, May 24 2012
FORMULA
From R. J. Mathar, Mar 24 2011: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) = 7*n*(n^3/8 + n^2/2 + 3*n/4 + 1/2) + (15 + (-1)^n)/16.
G.f.: ( -1 - 10*x - 20*x^2 - 10*x^3 - x^4 ) / ( (1 + x)*(x - 1)^5 ). (End)
E.g.f.: (cosh(x) + 7*exp(x)*(1 + 15*x + 25*x^2 + 10*x^3 + x^4))/8. - Franck Maminirina Ramaharo, Nov 09 2018
MATHEMATICA
CoefficientList[Series[ (-1-10 x-20 x^2-10 x^3-x^4)/((x-1)^5 (1+x)), {x, 0, 40}], x] (* Harvey P. Dale, Apr 04 2011 *)
Table[7*n*(n^3 + 4*n^2 + 6*n + 4)/8 + (15 + (-1)^n)/16, {n, 0, 40}] (* T. D. Noe, Apr 04 2011 *)
PROG
(PARI) a(n)=7*n*(n^3+4*n^2+6*n+4)/8+(15+(-1)^n)/16 \\ Charles R Greathouse IV, Aug 21 2011
(Magma)[7*n*(n^3+4*n^2+6*n+4)/8+(15+(-1)^n)/16: n in [0..40] ]; // Vincenzo Librandi, Aug 22 2011
CROSSREFS
Cf. A007202.
Sequence in context: A245951 A352869 A212572 * A212752 A074086 A205335
KEYWORD
nonn,easy,less
AUTHOR
Jonathan Vos Post, Feb 25 2011
STATUS
approved