The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186707 Partial sums of A007202 (crystal ball sequence for hexagonal close-packing). 3
 1, 14, 71, 224, 547, 1134, 2101, 3584, 5741, 8750, 12811, 18144, 24991, 33614, 44297, 57344, 73081, 91854, 114031, 140000, 170171, 204974, 244861, 290304, 341797, 399854, 465011, 537824, 618871, 708750, 808081, 917504, 1037681, 1169294, 1313047, 1469664 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Subsequence of primes begins 71, 547, 5741, 114031, 244861, 465011, 808081, 1037681. Subsequence of powers includes 537824 = 2^5 * 7^5. The sequence is a quasipolynomial, so under the Bunyakovsky conjecture there are infinitely many primes in this sequence. - Charles R Greathouse IV, Aug 21 2011 Let s(0) = 0 and s(n) = A186707(n-1) for n > 0. Then s(n) is the number of 4-tuples (w,x,y,z) having all terms in {1, ..., n} and |w - x| < w + |y - z|. - Clark Kimberling, May 24 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1). FORMULA From R. J. Mathar, Mar 24 2011: (Start) a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) = 7*n*(n^3/8 + n^2/2 + 3*n/4 + 1/2) + (15 + (-1)^n)/16. G.f.: ( -1 - 10*x - 20*x^2 - 10*x^3 - x^4 ) / ( (1 + x)*(x - 1)^5 ). (End) E.g.f.: (cosh(x) + 7*exp(x)*(1 + 15*x + 25*x^2 + 10*x^3 + x^4))/8. - Franck Maminirina Ramaharo, Nov 09 2018 MATHEMATICA CoefficientList[Series[ (-1-10 x-20 x^2-10 x^3-x^4)/((x-1)^5 (1+x)), {x, 0, 40}], x]  (* Harvey P. Dale, Apr 04 2011 *) Table[7*n*(n^3 + 4*n^2 + 6*n + 4)/8 + (15 + (-1)^n)/16, {n, 0, 40}] (* T. D. Noe, Apr 04 2011 *) PROG (PARI) a(n)=7*n*(n^3+4*n^2+6*n+4)/8+(15+(-1)^n)/16 \\ Charles R Greathouse IV, Aug 21 2011 (MAGMA)[7*n*(n^3+4*n^2+6*n+4)/8+(15+(-1)^n)/16: n in [0..40] ]; // Vincenzo Librandi, Aug 22 2011 CROSSREFS Cf. A007202. Sequence in context: A041372 A245951 A212572 * A212752 A074086 A205335 Adjacent sequences:  A186704 A186705 A186706 * A186708 A186709 A186710 KEYWORD nonn,easy,less AUTHOR Jonathan Vos Post, Feb 25 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 00:09 EDT 2021. Contains 343685 sequences. (Running on oeis4.)