login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A007202 (crystal ball sequence for hexagonal close-packing).
3

%I #38 Sep 08 2022 08:45:55

%S 1,14,71,224,547,1134,2101,3584,5741,8750,12811,18144,24991,33614,

%T 44297,57344,73081,91854,114031,140000,170171,204974,244861,290304,

%U 341797,399854,465011,537824,618871,708750,808081,917504,1037681,1169294,1313047,1469664

%N Partial sums of A007202 (crystal ball sequence for hexagonal close-packing).

%C Subsequence of primes begins 71, 547, 5741, 114031, 244861, 465011, 808081, 1037681. Subsequence of powers includes 537824 = 2^5 * 7^5.

%C The sequence is a quasipolynomial, so under the Bunyakovsky conjecture there are infinitely many primes in this sequence. - _Charles R Greathouse IV_, Aug 21 2011

%C Let s(0) = 0 and s(n) = A186707(n-1) for n > 0. Then s(n) is the number of 4-tuples (w,x,y,z) having all terms in {1, ..., n} and |w - x| < w + |y - z|. - _Clark Kimberling_, May 24 2012

%H Vincenzo Librandi, <a href="/A186707/b186707.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,0,5,-4,1).

%F From _R. J. Mathar_, Mar 24 2011: (Start)

%F a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) = 7*n*(n^3/8 + n^2/2 + 3*n/4 + 1/2) + (15 + (-1)^n)/16.

%F G.f.: ( -1 - 10*x - 20*x^2 - 10*x^3 - x^4 ) / ( (1 + x)*(x - 1)^5 ). (End)

%F E.g.f.: (cosh(x) + 7*exp(x)*(1 + 15*x + 25*x^2 + 10*x^3 + x^4))/8. - _Franck Maminirina Ramaharo_, Nov 09 2018

%t CoefficientList[Series[ (-1-10 x-20 x^2-10 x^3-x^4)/((x-1)^5 (1+x)),{x,0,40}],x] (* _Harvey P. Dale_, Apr 04 2011 *)

%t Table[7*n*(n^3 + 4*n^2 + 6*n + 4)/8 + (15 + (-1)^n)/16, {n, 0, 40}] (* _T. D. Noe_, Apr 04 2011 *)

%o (PARI) a(n)=7*n*(n^3+4*n^2+6*n+4)/8+(15+(-1)^n)/16 \\ _Charles R Greathouse IV_, Aug 21 2011

%o (Magma)[7*n*(n^3+4*n^2+6*n+4)/8+(15+(-1)^n)/16: n in [0..40] ]; // _Vincenzo Librandi_, Aug 22 2011

%Y Cf. A007202.

%K nonn,easy,less

%O 0,2

%A _Jonathan Vos Post_, Feb 25 2011