login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186708
Number of quadratic residues (mod p) in the interval [1,2k+1], for primes p=4k+3.
1
1, 2, 4, 6, 7, 9, 12, 14, 19, 18, 21, 22, 25, 28, 31, 34, 40, 39, 41, 42, 47, 52, 54, 54, 57, 59, 64, 67, 73, 72, 73, 75, 81, 87, 87, 94, 99, 96, 99, 104, 118, 118, 117, 118, 119, 127, 132, 125, 136, 129, 136, 138, 141, 154, 150, 157, 162
OFFSET
1,2
COMMENTS
For primes of the form p=4k+3 (A002145), count numbers in [1,2k+1] which are quadratic residues mod p.
R. K. Guy asks whether there is an elementary proof for the fact that there are always less quadratic residues in the interval [2k+2,4k+2] than in [1,2k+1].
FORMULA
a(n) = A104635(n) - A186709(n) = A186709(n) + A178154(n) = (A104635(n) + A178154(n))/2 = (A002145(n) + 2*A178154(n) - 1)/4.
PROG
(PARI) forprime( p=1, 499, p%4==3|next; u=3; c=[1, 0]; for(i=2, p-2, bittest(u, i^2%p) & next; u+=1<<(i^2%p); c[i^2%p*2\p+1]++); print1(c[1]", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Feb 25 2011
STATUS
approved