login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245951
Number of length 1+3 0..n arrays with some pair in every consecutive four terms totalling exactly n.
1
14, 71, 196, 453, 834, 1435, 2216, 3305, 4630, 6351, 8364, 10861, 13706, 17123, 20944, 25425, 30366, 36055, 42260, 49301, 56914, 65451, 74616, 84793, 95654, 107615, 120316, 134205, 148890, 164851, 181664, 199841, 218926, 239463, 260964, 284005
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Conjectures from Colin Barker, Nov 05 2018: (Start)
G.f.: x*(14 + 43*x + 40*x^2 + 46*x^3 + 2*x^4 - x^5) / ((1 - x)^4*(1 + x)^2).
a(n) = 1 + 5*n + 3*n^2 + 6*n^3 for n even.
a(n) = 4 + n + 3*n^2 + 6*n^3 for n odd.
(End)
EXAMPLE
Some solutions for n=10:
..6....5....7...10....6....7....6....0....3....6....1....8....5....1...10....8
..5....7....5....1...10...10....9...10....7....5...10...10....5....5....9....2
..3....6...10....9....4....6....6....8....7....4....9....4....2....5....7....1
..7....4....5....7...10....4....1...10....7....6....5....0....0....2....0....6
CROSSREFS
Row 1 of A245950.
Sequence in context: A222989 A245950 A041372 * A352869 A212572 A186707
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 08 2014
STATUS
approved