login
A034830
a(n) = n-th sept-factorial number divided by 3.
9
1, 10, 170, 4080, 126480, 4806240, 216280800, 11246601600, 663549494400, 43794266630400, 3196981464019200, 255758517121536000, 22250990989573632000, 2091593153019921408000, 211250908455012062208000, 22815098113141302718464000, 2623736283011249812623360000
OFFSET
1,2
FORMULA
3*a(n) = (7*n-4)(!^7) = Product_{j=1..n} (7*j-4).
E.g.f.: (-1 + (1-7*x)^(-3/7))/3.
From Amiram Eldar, Dec 20 2022: (Start)
a(n) = A144739(n)/3.
Sum_{n>=1} 1/a(n) = 3*(e/7^4)^(1/7)*(Gamma(3/7) - Gamma(3/7, 1/7)). (End)
MATHEMATICA
Drop[With[{nn = 40}, CoefficientList[Series[(-1 + (1 - 7*x)^(-3/7))/3, {x, 0, nn}], x]*Range[0, nn]!], 1] (* G. C. Greubel, Feb 23 2018 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace((-1 + (1-7*x)^(-3/7))/3)) \\ G. C. Greubel, Feb 23 2018
KEYWORD
easy,nonn
EXTENSIONS
More terms added by G. C. Greubel, Feb 23 2018
STATUS
approved