|
|
A034834
|
|
One seventh of sept-factorial numbers.
|
|
11
|
|
|
1, 14, 294, 8232, 288120, 12101040, 592950960, 33205253760, 2091930986880, 146435169081600, 11275508019283200, 947142673619788800, 86189983299400780800, 8446618363341276518400, 886894928150834034432000, 99332231952893411856384000, 11820535602394316010909696000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..335
Index entries for sequences related to factorial numbers.
|
|
FORMULA
|
7*a(n) = (7*n)(!^7) = Product_{j=1..n} 7*j = 7^n*n!.
E.g.f.: x/(1-7*x).
a(n) = A051188(n)/7.
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 7*(exp(1/7)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*(1-exp(-1/7)). (End)
|
|
MATHEMATICA
|
Table[7^(n-1)*n!, {n, 1, 30}] (* or *) Drop[With[{nn = 50}, CoefficientList[ Series[x/(1-7*x), {x, 0, nn}], x]*Range[0, nn]!], 1] (* G. C. Greubel, Feb 22 2018 *)
|
|
PROG
|
(PARI) my(x='x+O('x^30)); Vec(serlaplace(x/(1-7*x))) \\ G. C. Greubel, Feb 22 2018
(Magma) [7^(n-1)*Factorial(n): n in [1..30]]; // G. C. Greubel, Feb 22 2018
|
|
CROSSREFS
|
Cf. A045754, A034829, A034830, A034831, A034832, A034833, A051188.
Sequence in context: A158475 A116165 A186376 * A276699 A258491 A251220
Adjacent sequences: A034831 A034832 A034833 * A034835 A034836 A034837
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Wolfdieter Lang
|
|
EXTENSIONS
|
More terms from G. C. Greubel, Feb 22 2018
|
|
STATUS
|
approved
|
|
|
|