login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034833
a(n) = n-th sept-factorial number divided by 6.
9
1, 13, 260, 7020, 238680, 9785880, 469722240, 25834723200, 1601752838400, 110520945849600, 8399591884569600, 697166126419276800, 62744951377734912000, 6086260283640286464000, 632971069498589792256000, 70259788714343466940416000, 8290655068292529098969088000
OFFSET
1,2
FORMULA
a(n) = A049209(n)/6;
a(n) = (7*n-1)(!^7)/6;
a(n) = (1/6)*Product_{j=1..n} (7*j-1);
a(n) = (1/6)*(7*n)! / (7^n * n! * A045754(n) * 2*A034829(n) * 3*A034830(n) * 4*A034831(n) * 5*A034832(n)).
E.g.f.: (-1 + (1-7*x)^(-6/7))/6.
Sum_{n>=1} 1/a(n) = 6*(e/7)^(1/7)*(Gamma(6/7) - Gamma(6/7, 1/7)). - Amiram Eldar, Dec 20 2022
MATHEMATICA
FoldList[Times, 1, Rest[7*Range[20]-1]] (* Harvey P. Dale, Dec 15 2014 *)
PROG
(PARI) my(x='x+('x^30)); Vec(serlaplace((-1 + (1-7*x)^(-6/7))/6)) \\ G. C. Greubel, Feb 22 2018
(Magma) [(&*[(7*k-1): k in [1..n]])/6: n in [1..30]]; // G. C. Greubel, Feb 24 2018
KEYWORD
easy,nonn
STATUS
approved