OFFSET
1,2
LINKS
FORMULA
a(n) = A049209(n)/6;
a(n) = (7*n-1)(!^7)/6;
a(n) = (1/6)*Product_{j=1..n} (7*j-1);
a(n) = (1/6)*(7*n)! / (7^n * n! * A045754(n) * 2*A034829(n) * 3*A034830(n) * 4*A034831(n) * 5*A034832(n)).
E.g.f.: (-1 + (1-7*x)^(-6/7))/6.
Sum_{n>=1} 1/a(n) = 6*(e/7)^(1/7)*(Gamma(6/7) - Gamma(6/7, 1/7)). - Amiram Eldar, Dec 20 2022
MATHEMATICA
FoldList[Times, 1, Rest[7*Range[20]-1]] (* Harvey P. Dale, Dec 15 2014 *)
PROG
(PARI) my(x='x+('x^30)); Vec(serlaplace((-1 + (1-7*x)^(-6/7))/6)) \\ G. C. Greubel, Feb 22 2018
(Magma) [(&*[(7*k-1): k in [1..n]])/6: n in [1..30]]; // G. C. Greubel, Feb 24 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved