login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034835
Expansion of 1/(1-49*x)^(1/7); related to sept-factorial numbers A045754.
6
1, 7, 196, 6860, 264110, 10722866, 450360372, 19365495996, 847240449825, 37560993275575, 1682732498745760, 76028913806967520, 3459315578217022160, 158330213003009860400, 7283189798138453578400, 336483368673996555322080
OFFSET
0,2
LINKS
A. Straub, V. H. Moll, T. Amdeberhan, The p-adic valuation of k-central binomial coefficients, Acta Arith. 140 (1) (2009) 31-41, eq (1.10)
FORMULA
a(n) = 7^n*A045754(n)/n!, n >= 1, A045754(n) = (7*n-6)(!^7) := product(7*j-6, j=1..n); G.f.: (1-49*x)^(-1/7).
D-finite with recurrence: n*a(n) +7*(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 28 2020
MATHEMATICA
CoefficientList[Series[1/(1 - 49*x)^(1/7), {x, 0, 50}], x] (* G. C. Greubel, Feb 22 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(1/(1 - 49*x)^(1/7)) \\ G. C. Greubel, Feb 22 2018
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!(1/(1 - 49*x)^(1/7))) // G. C. Greubel, Feb 22 2018
KEYWORD
easy,nonn
STATUS
approved