login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n-th sept-factorial number divided by 6.
9

%I #42 Dec 20 2022 03:51:31

%S 1,13,260,7020,238680,9785880,469722240,25834723200,1601752838400,

%T 110520945849600,8399591884569600,697166126419276800,

%U 62744951377734912000,6086260283640286464000,632971069498589792256000,70259788714343466940416000,8290655068292529098969088000

%N a(n) = n-th sept-factorial number divided by 6.

%H Harvey P. Dale, <a href="/A034833/b034833.txt">Table of n, a(n) for n = 1..339</a>

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>.

%F a(n) = A049209(n)/6;

%F a(n) = (7*n-1)(!^7)/6;

%F a(n) = (1/6)*Product_{j=1..n} (7*j-1);

%F a(n) = (1/6)*(7*n)! / (7^n * n! * A045754(n) * 2*A034829(n) * 3*A034830(n) * 4*A034831(n) * 5*A034832(n)).

%F E.g.f.: (-1 + (1-7*x)^(-6/7))/6.

%F Sum_{n>=1} 1/a(n) = 6*(e/7)^(1/7)*(Gamma(6/7) - Gamma(6/7, 1/7)). - _Amiram Eldar_, Dec 20 2022

%t FoldList[Times,1,Rest[7*Range[20]-1]] (* _Harvey P. Dale_, Dec 15 2014 *)

%o (PARI) my(x='x+('x^30)); Vec(serlaplace((-1 + (1-7*x)^(-6/7))/6)) \\ _G. C. Greubel_, Feb 22 2018

%o (Magma) [(&*[(7*k-1): k in [1..n]])/6: n in [1..30]]; // _G. C. Greubel_, Feb 24 2018

%Y Cf. A049209, A045754, A034829, A034830, A034831, A034832, A034834.

%K easy,nonn

%O 1,2

%A _Wolfdieter Lang_