login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101004
See formula line.
1
1, 13, 263, 7518, 280074, 12895572, 707902740, 45152821872, 3282497058384, 267944580145440, 24268165166553120, 2415271958048304000, 262018936450492859520, 30774091302535254992640, 3890462788950375951532800, 526745212429645673433446400, 76046696235437224473872640000
OFFSET
1,2
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891
FORMULA
Let h_n = Sum_{ j=1..n } binomial(n,j)^2*binomial(2*j,j)*Sum_{ i=0..j-1 } 2/(n-i). Then a(n) = n!*h_n/4.
a(n) ~ n! * log(3) * 3^(2*n + 3/2) / (8*Pi*n). - Vaclav Kotesovec, Oct 06 2019
MAPLE
h := n-> add(binomial(n, j)^2*binomial(2*j, j)*add( 2/(n-i), i=0..j-1), j=1..n); [seq(n!*h(n)/4, n=1..30)];
MATHEMATICA
h[n_] := Sum[Binomial[n, j]^2*Binomial[2*j, j]*Sum[2/(n-i), {i, 0, j-1}], {j, 1, n}]; a[n_] := n!*h[n]/4; (* Jean-François Alcover, May 31 2016 *)
CROSSREFS
Sequence in context: A034242 A142811 A034833 * A340936 A142931 A142262
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 20 2008, Jan 25 2008
STATUS
approved