|
|
A101006
|
|
Indices of primes in sequence defined by A(0) = 91, A(n) = 10*A(n-1) + 31 for n > 0.
|
|
1
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numbers n such that (850*10^n - 31)/9 is prime.
Numbers n such that digit 9 followed by n >= 0 occurrences of digit 4 followed by digit 1 is prime.
Some of the larger entries may only correspond to probable primes.
a(10) > 10^5. - Robert Price, Nov 07 2015
|
|
REFERENCES
|
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
|
|
LINKS
|
Table of n, a(n) for n=1..9.
Makoto Kamada, Prime numbers of the form 944...441.
Index entries for primes involving repunits.
|
|
FORMULA
|
a(n) = A103097(n) - 1.
|
|
EXAMPLE
|
944444441 is prime, hence 7 is a term.
|
|
MATHEMATICA
|
Select[Range[0, 100000], PrimeQ[(850*10^# - 31)/9] &] (* Robert Price, Nov 07 2015 *)
|
|
PROG
|
(PARI) a=91; for(n=0, 3000, if(isprime(a), print1(n, ", ")); a=10*a+31)
(PARI) for(n=0, 3000, if(isprime((850*10^n-31)/9), print1(n, ", ")))
|
|
CROSSREFS
|
Cf. A000533, A002275, A103097.
Sequence in context: A175986 A296351 A349007 * A306632 A083461 A137029
Adjacent sequences: A101003 A101004 A101005 * A101007 A101008 A101009
|
|
KEYWORD
|
nonn,hard,more,less
|
|
AUTHOR
|
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 27 2004
|
|
EXTENSIONS
|
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(7)-a(8) from Kamada data by Ray Chandler, Apr 28 2015
a(9) from Robert Price, Nov 07 2015
|
|
STATUS
|
approved
|
|
|
|