OFFSET
1,2
COMMENTS
Numbers n such that (830*10^n + 43)/9 is prime.
Numbers n such that digit 9 followed by n >= 0 occurrences of digit 2 followed by digit 7 is prime.
Numbers corresponding to terms <= 663 are certified primes.
a(15) > 10^5. - Robert Price, Nov 02 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103095(n) - 1.
EXAMPLE
92227 is prime, hence 3 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(830*10^# + 43)/9] &] (* Robert Price, Nov 02 2015 *)
PROG
(PARI) a=97; for(n=0, 1000, if(isprime(a), print1(n, ", ")); a=10*a-43)
(PARI) for(n=0, 1000, if(isprime((830*10^n+43)/9 ), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more,less
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 27 2004
EXTENSIONS
Two more terms, corresponding to probable primes, from Ryan Propper, Jun 21 2005
Edited by T. D. Noe, Oct 30 2008
a(12)-a(14) from Kamada data by Ray Chandler, Apr 28 2015
STATUS
approved