OFFSET
1,1
COMMENTS
Numbers n such that (850*10^n - 13)/9 is prime.
Numbers n such that digit 9 followed by n >= 0 occurrences of digit 4 followed by digit 3 is prime.
Numbers corresponding to terms <= 580 are certified primes.
a(10) > 10^5. - Robert Price, Nov 05 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103098(n) - 1.
EXAMPLE
9444444444444444444444444444443 is prime, hence 29 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(850*10^# - 13)/9] &] (* Robert Price, Nov 05 2015 *)
PROG
(PARI) a=93; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+13)
(PARI) for(n=0, 1500, if(isprime((850*10^n-13)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more,less
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 27 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(8)-a(9) from Kamada data by Ray Chandler, Apr 28 2015
STATUS
approved