login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242194 Least prime divisor of E_{2*n} which does not divide any E_{2*k} with k < n, or 1 if such a primitive prime divisor of E_{2*n} does not exist, where E_m denotes the m-th Euler number given by A122045. 8
1, 5, 61, 277, 19, 13, 47, 17, 79, 41737, 31, 2137, 67, 29, 15669721, 930157, 4153, 37, 23489580527043108252017828576198947741, 41, 137, 587, 285528427091, 5516994249383296071214195242422482492286460673697, 5639, 53, 2749, 5303, 1459879476771247347961031445001033, 6821509 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Conjecture: a(n) is prime for any n > 1.

It is known that (-1)^n*E_{2*n} > 0 for all n = 0, 1, ....

See also A242193 for a similar conjecture involving Bernoulli numbers.

LINKS

Peter Luschny, Table of n, a(n) for n = 1..82, (a(1)..a(34) from Zhi-Wei Sun, a(35)..a(38) from Jean-François Alcover).

Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.

EXAMPLE

a(4) = 277 since E_8 = 5*277 with 277 not dividing E_2*E_4*E_6, but 5 divides E_4 = 5.

MATHEMATICA

e[n_]:=Abs[EulerE[2n]]

f[n_]:=FactorInteger[e[n]]

p[n_]:=p[n]=Table[Part[Part[f[n], k], 1], {k, 1, Length[f[n]]}]

Do[If[e[n]<2, Goto[cc]]; Do[Do[If[Mod[e[i], Part[p[n], k]]==0, Goto[aa]], {i, 1, n-1}]; Print[n, " ", Part[p[n], k]]; Goto[bb]; Label[aa]; Continue, {k, 1, Length[p[n]]}]; Label[cc]; Print[n, " ", 1]; Label[bb]; Continue, {n, 1, 30}]

(* Second program: *)

LPDtransform[n_, fun_] := Module[{}, d[p_, m_] := d[p, m] = AllTrue[ Range[m-1], ! Divisible[fun[#], p]&]; f[m_] := f[m] = FactorInteger[ fun[m]][[All, 1]]; SelectFirst[f[n], d[#, n]&] /. Missing[_] -> 1];

a[n_] := a[n] = LPDtransform[n, Function[k, Abs[EulerE[2k]]]];

Table[Print[n, " ", a[n]]; a[n], {n, 1, 38}]  (* Jean-François Alcover, Jul 28 2019, non-optimized adaptation of Peter Luschny's Sage code *)

PROG

(Sage) # uses[LPDtransform from A242193]

A242194list = lambda sup: [LPDtransform(n, lambda k: euler_number(2*k)) for n in (1..sup)]

print(A242194list(16)) # Peter Luschny, Jul 26 2019

CROSSREFS

Cf. A000040, A000364, A122045, A242169, A242170, A242171, A242173, A242193, A242195.

Sequence in context: A142643 A201848 A087871 * A046976 A092838 A196296

Adjacent sequences:  A242191 A242192 A242193 * A242195 A242196 A242197

KEYWORD

hard,nonn

AUTHOR

Zhi-Wei Sun, May 07 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)