login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046980
Numerators of Taylor series for exp(x)*cos(x).
4
1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1
OFFSET
0,1
COMMENTS
Lehmer sequence U_n for R=2 Q=1. [Artur Jasinski, Oct 06 2008]
REFERENCES
G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
FORMULA
G.f.: (1+x-x^3)/(1+x^4).
a(n) = (b^(n+1) - c^(n+1))/(b - c) where b = sqrt(2)-((1 + I)/sqrt(2)), c = (1 + I)/sqrt(2). [Artur Jasinski, Oct 06 2008]
EXAMPLE
1 + 1*x - (1/3)*x^3 - (1/6)*x^4 - (1/30)*x^5 + (1/630)*x^7 + (1/2520)*x^8 + (1/22680)*x^9 - ...
MAPLE
A046980 := n -> `if`(n mod 4 = 2, 0, (-1)^floor((n+1)/4)):
seq(A046980(n), n=0..92); # Peter Luschny, Jun 16 2017
MATHEMATICA
b = -((1 + I)/Sqrt[2]) + Sqrt[2]; c = (1 + I)/Sqrt[2]; Table[ Round[(b^n - c^n)/(b - c)], {n, 2, 200}] (* Artur Jasinski, Oct 06 2008 *)
LinearRecurrence[{0, 0, 0, -1}, {1, 1, 0, -1}, 100] (* Jean-François Alcover, Apr 01 2016 *)
PadRight[{}, 120, {1, 1, 0, -1, -1, -1, 0, 1}] (* Harvey P. Dale, Nov 02 2024 *)
CROSSREFS
Cf. A046981.
Sequence in context: A229343 A085369 A188082 * A152822 A118831 A118828
KEYWORD
sign,frac,easy,nice
STATUS
approved