This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118828 Numerators of the convergents of the 2-adic continued fraction of zero given by A118827. 4
 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, 1, -1, 0, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS FORMULA Period 8 sequence: [1,-1,0,-1,-1,1,0,1]. G.f.: (1-x-x^3)/(1+x^4). a(n)=1/8*{-[(n+1) mod 8]+[(n+2) mod 8]-2*[(n+3) mod 8]+[(n+5) mod 8]-[(n+6) mod 8]+2*[(n+7) mod 8]} with n>=0 - Paolo P. Lava, Nov 27 2006 EXAMPLE For n>=1, convergents A118828(k)/A118829(k) are: at k = 4*n: -1/(2*A080277(n)); at k = 4*n+1: -1/(2*A080277(n)-1); at k = 4*n+2: -1/(2*A080277(n)-2); at k = 4*n-1: 0/(-1)^n. Convergents begin: 1/1, -1/-2, 0/-1, -1/2, -1/1, 1/0, 0/1, 1/-8, 1/-7, -1/6, 0/-1, -1/10, -1/9, 1/-8, 0/1, 1/-24, 1/-23, -1/22, 0/-1, -1/26, -1/25, 1/-24, 0/1, 1/-32, 1/-31, -1/30, 0/-1, -1/34, -1/33, 1/-32, 0/1, 1/-64, ... PROG (PARI) {a(n)=local(p=+1, q=-2, v=vector(n, i, if(i%2==1, p, q*2^valuation(i/2, 2)))); contfracpnqn(v)[1, 1]} CROSSREFS Cf. A118827 (partial quotients), A118829 (denominators). Sequence in context: A046980 A152822 A118831 * A105234 A285599 A284386 Adjacent sequences:  A118825 A118826 A118827 * A118829 A118830 A118831 KEYWORD frac,sign AUTHOR Paul D. Hanna, May 01 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 20:41 EDT 2019. Contains 323410 sequences. (Running on oeis4.)